結果
| 問題 |
No.2423 Merge Stones
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 21:57:56 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,686 bytes |
| コンパイル時間 | 256 ms |
| コンパイル使用メモリ | 82,684 KB |
| 実行使用メモリ | 64,712 KB |
| 最終ジャッジ日時 | 2025-04-15 21:59:00 |
| 合計ジャッジ時間 | 6,755 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 TLE * 1 -- * 61 |
ソースコード
def main():
import sys
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx += 1
K = int(input[idx])
idx += 1
A = list(map(int, input[idx:idx+N]))
idx += N
C = list(map(int, input[idx:idx+N]))
idx += N
# Double the arrays to handle circularity
A_double = A + A
C_double = C + C
max_color = 50
# Precompute compatible masks for each color (0-based in the array, but colors are 1-based)
compatible_masks = [0] * max_color # compatible_masks[c] is for color c+1
for c in range(max_color):
current_color = c + 1
low = max(1, current_color - K)
high = min(max_color, current_color + K)
mask = 0
for d in range(low, high + 1):
mask |= 1 << (d - 1)
compatible_masks[c] = mask
# Precompute prefix sums for the double array
prefix = [0] * (2 * N + 1)
for i in range(2 * N):
prefix[i + 1] = prefix[i] + A_double[i]
# Initialize possible[i][j] as a list of bitmasks
possible = [[0] * (2 * N) for _ in range(2 * N)]
for i in range(2 * N):
color = C_double[i] - 1 # 0-based
possible[i][i] = 1 << color
# Fill the DP table
for l in range(2, N + 1):
for i in range(2 * N - l + 1):
j = i + l - 1
possible[i][j] = 0
for k in range(i, j):
left = possible[i][k]
right = possible[k + 1][j]
if left == 0 or right == 0:
continue
# Compute expand_R
expand_R = 0
temp_right = right
c = 0
while temp_right:
if temp_right & 1:
expand_R |= compatible_masks[c]
temp_right >>= 1
c += 1
# Compute expand_L
expand_L = 0
temp_left = left
c = 0
while temp_left:
if temp_left & 1:
expand_L |= compatible_masks[c]
temp_left >>= 1
c += 1
merged_mask = (left & expand_R) | (right & expand_L)
possible[i][j] |= merged_mask
# Find the maximum sum
max_sum = 0
for i in range(2 * N):
for j in range(i, min(i + N, 2 * N)):
if j - i + 1 > N:
continue
if possible[i][j] == 0:
continue
current_sum = prefix[j + 1] - prefix[i]
if current_sum > max_sum:
max_sum = current_sum
print(max_sum)
if __name__ == "__main__":
main()
lam6er