結果
問題 | No.1796 木上のクーロン |
ユーザー |
![]() |
提出日時 | 2025-04-15 22:42:22 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,507 bytes |
コンパイル時間 | 257 ms |
コンパイル使用メモリ | 81,836 KB |
実行使用メモリ | 76,592 KB |
最終ジャッジ日時 | 2025-04-15 22:43:55 |
合計ジャッジ時間 | 14,740 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 TLE * 1 -- * 16 |
ソースコード
import sys from collections import deque MOD = 998244353 def main(): input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 Q = list(map(int, input[ptr:ptr+N])) ptr += N adj = [[] for _ in range(N+1)] for _ in range(N-1): u = int(input[ptr]) v = int(input[ptr+1]) adj[u].append(v) adj[v].append(u) ptr += 2 # Precompute factorial and k0 fact = [1] * (N+1) for i in range(1, N+1): fact[i] = fact[i-1] * i % MOD k0 = pow(fact[N], 2, MOD) # Precompute inverse squares max_dist_plus_1 = N # maximum possible (dist+1) is N inv = [1] * (max_dist_plus_1 + 2) for i in range(2, max_dist_plus_1 + 2): inv[i] = pow(i, MOD-2, MOD) inv_sq = [1] * (max_dist_plus_1 + 2) for i in range(1, max_dist_plus_1 + 2): inv_sq[i] = inv[i] * inv[i] % MOD E = [0] * (N+1) # 1-based for i in range(1, N+1): dist = [-1] * (N+1) q = deque() q.append(i) dist[i] = 0 while q: u = q.popleft() for v in adj[u]: if dist[v] == -1: dist[v] = dist[u] + 1 q.append(v) qi = Q[i-1] for p in range(1, N+1): d_plus_1 = dist[p] + 1 term = qi * inv_sq[d_plus_1] % MOD E[p] = (E[p] + term) % MOD for p in range(1, N+1): res = E[p] * k0 % MOD print(res) if __name__ == '__main__': main()