結果
| 問題 | 
                            No.1796 木上のクーロン
                             | 
                    
| コンテスト | |
| ユーザー | 
                             lam6er
                         | 
                    
| 提出日時 | 2025-04-15 22:45:58 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,507 bytes | 
| コンパイル時間 | 222 ms | 
| コンパイル使用メモリ | 81,832 KB | 
| 実行使用メモリ | 76,592 KB | 
| 最終ジャッジ日時 | 2025-04-15 22:47:57 | 
| 合計ジャッジ時間 | 14,571 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge5 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 17 TLE * 1 -- * 16 | 
ソースコード
import sys
from collections import deque
MOD = 998244353
def main():
    input = sys.stdin.read().split()
    ptr = 0
    N = int(input[ptr])
    ptr += 1
    Q = list(map(int, input[ptr:ptr+N]))
    ptr += N
    adj = [[] for _ in range(N+1)]
    for _ in range(N-1):
        u = int(input[ptr])
        v = int(input[ptr+1])
        adj[u].append(v)
        adj[v].append(u)
        ptr += 2
    # Precompute factorial and k0
    fact = [1] * (N+1)
    for i in range(1, N+1):
        fact[i] = fact[i-1] * i % MOD
    k0 = pow(fact[N], 2, MOD)
    # Precompute inverse squares
    max_dist_plus_1 = N  # maximum possible (dist+1) is N
    inv = [1] * (max_dist_plus_1 + 2)
    for i in range(2, max_dist_plus_1 + 2):
        inv[i] = pow(i, MOD-2, MOD)
    inv_sq = [1] * (max_dist_plus_1 + 2)
    for i in range(1, max_dist_plus_1 + 2):
        inv_sq[i] = inv[i] * inv[i] % MOD
    E = [0] * (N+1)  # 1-based
    for i in range(1, N+1):
        dist = [-1] * (N+1)
        q = deque()
        q.append(i)
        dist[i] = 0
        while q:
            u = q.popleft()
            for v in adj[u]:
                if dist[v] == -1:
                    dist[v] = dist[u] + 1
                    q.append(v)
        qi = Q[i-1]
        for p in range(1, N+1):
            d_plus_1 = dist[p] + 1
            term = qi * inv_sq[d_plus_1] % MOD
            E[p] = (E[p] + term) % MOD
    for p in range(1, N+1):
        res = E[p] * k0 % MOD
        print(res)
if __name__ == '__main__':
    main()
            
            
            
        
            
lam6er