結果
| 問題 |
No.2207 pCr検査
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 22:59:47 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,242 bytes |
| コンパイル時間 | 192 ms |
| コンパイル使用メモリ | 81,572 KB |
| 実行使用メモリ | 53,064 KB |
| 最終ジャッジ日時 | 2025-04-15 23:01:24 |
| 合計ジャッジ時間 | 6,703 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | TLE * 1 -- * 29 |
ソースコード
def main():
import sys
input = sys.stdin.read().split()
idx = 0
k = int(input[idx])
idx += 1
N_factors = {}
for _ in range(k):
p = int(input[idx])
e = int(input[idx + 1])
N_factors[p] = e
idx += 2
# Check for r=1 case: N must be a single prime with exponent 1
if len(N_factors) == 1:
p_i, e_i = next(iter(N_factors.items()))
if e_i == 1:
print(p_i, 1)
return
# Check for each p_i in N's factors
for p_i in list(N_factors.keys()):
# Check condition a: exponent of p_i is 1
if N_factors[p_i] != 1:
continue
# Check condition b: all other primes are less than p_i
valid = True
for q in N_factors:
if q >= p_i and q != p_i:
valid = False
break
if not valid:
continue
# Check r=2 case
# Build 2*N factors
two_n_factors = {}
for q, exp in N_factors.items():
two_n_factors[q] = exp
if 2 in two_n_factors:
two_n_factors[2] += 1
else:
two_n_factors[2] = 1
# Check if p_i is in two_n_factors with exponent 1
if p_i not in two_n_factors or two_n_factors[p_i] != 1:
continue
# Compute the product of two_n_factors after removing one p_i
product = 1
for q, exp in two_n_factors.items():
if q == p_i:
if exp - 1 == 0:
continue
product *= q ** (exp - 1)
else:
product *= q ** exp
if product == p_i - 1:
print(p_i, 2)
return
# Check r=2 case where p_i is in two_n_factors but not in N_factors (unlikely but possible?)
# Build two_n_factors again
two_n_factors = {}
for q, exp in N_factors.items():
two_n_factors[q] = exp
if 2 in two_n_factors:
two_n_factors[2] += 1
else:
two_n_factors[2] = 1
# Iterate all primes in two_n_factors
for p_candidate in list(two_n_factors.keys()):
# Check if exponent is 1
if two_n_factors[p_candidate] != 1:
continue
# Check if p_candidate is a prime (since it's from N's factors or 2)
# In the problem input, all given primes are primes, so p_candidate is prime if it's in N_factors or is 2 added
# Compute product after removing one p_candidate
product = 1
for q, exp in two_n_factors.items():
if q == p_candidate:
if exp - 1 == 0:
continue
product *= q ** (exp - 1)
else:
product *= q ** exp
if product == p_candidate - 1:
# Check if p_candidate is in N's factors and satisfies conditions a and b
# p_candidate might be 2 added, which is not in N's factors
# So need to check if p_candidate is a valid candidate
# Check if p_candidate is in N's factors
if p_candidate in N_factors:
# Check condition a and b for p_candidate
if N_factors[p_candidate] != 1:
continue
valid = True
for q in N_factors:
if q >= p_candidate and q != p_candidate:
valid = False
break
if not valid:
continue
print(p_candidate, 2)
return
else:
# p_candidate is 2 added, check if all factors of N are less than p_candidate
# and p_candidate is a prime (which it is, since 2 is added)
# but N's factors must all be < p_candidate
valid = True
for q in N_factors:
if q >= p_candidate:
valid = False
break
if valid:
# Also, check that in N's factors, p_candidate's exponent in two_n_factors is 1 (which it is)
print(p_candidate, 2)
return
# If none found
print(-1, -1)
if __name__ == "__main__":
main()
lam6er