結果
| 問題 |
No.1265 Balloon Survival
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-15 23:22:34 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,434 bytes |
| コンパイル時間 | 364 ms |
| コンパイル使用メモリ | 82,156 KB |
| 実行使用メモリ | 97,276 KB |
| 最終ジャッジ日時 | 2025-04-15 23:24:08 |
| 合計ジャッジ時間 | 6,875 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 9 WA * 23 |
ソースコード
import math
from collections import deque
def main():
import sys
input = sys.stdin.read().split()
idx = 0
N = int(input[idx])
idx +=1
x0 = int(input[idx])
y0 = int(input[idx+1])
idx +=2
balloons = []
for _ in range(N-1):
x = int(input[idx])
y = int(input[idx+1])
idx +=2
balloons.append((x, y))
if N == 1:
print(0)
return
# Compute t_i for each balloon
t = []
for (x, y) in balloons:
dx = x - x0
dy = y - y0
dist = math.hypot(dx, dy)
t_i = dist / 2.0
t.append(t_i)
# Build adjacency list for bipartite graph
adj = [[] for _ in range(len(balloons))]
for i in range(len(balloons)):
xi, yi = balloons[i]
for j in range(i+1, len(balloons)):
xj, yj = balloons[j]
dx = xi - xj
dy = yi - yj
dist_ij = math.hypot(dx, dy)
t_ij = dist_ij / 2.0
if t_ij < min(t[i], t[j]):
adj[i].append(j)
adj[j].append(i)
# Bipartite graph: split each node into left and right
# Use Hopcroft-Karp algorithm
# Each node is represented in left and right partitions
# So node i in left is i, in right is len(balloons) + i
size_left = len(balloons)
size_right = len(balloons)
graph = [[] for _ in range(size_left + size_right)]
for i in range(len(balloons)):
for j in adj[i]:
graph[i].append(len(balloons) + j)
graph[len(balloons) + j].append(i)
# Hopcroft-Karp algorithm
def hopcroft_karp():
pair_U = [-1] * (size_left + size_right)
pair_V = [-1] * (size_left + size_right)
dist = [0] * (size_left + size_right)
def bfs():
queue = deque()
for u in range(size_left):
if pair_U[u] == -1:
dist[u] = 0
queue.append(u)
else:
dist[u] = float('inf')
dist_null = float('inf')
while queue:
u = queue.popleft()
if dist[u] < dist_null:
for v in graph[u]:
if pair_V[v] == -1:
dist_null = dist[u] + 1
elif dist[pair_V[v]] == float('inf'):
dist[pair_V[v]] = dist[u] + 1
queue.append(pair_V[v])
return dist_null != float('inf')
def dfs(u):
for v in graph[u]:
if pair_V[v] == -1 or (dist[pair_V[v]] == dist[u] + 1 and dfs(pair_V[v])):
pair_U[u] = v
pair_V[v] = u
return True
dist[u] = float('inf')
return False
result = 0
while bfs():
for u in range(size_left):
if pair_U[u] == -1:
if dfs(u):
result +=1
return result
max_matching = hopcroft_karp()
# Each pair in bipartite graph corresponds to a pair in original graph, but each original edge is represented twice
# So the actual maximum matching in the original graph is max_matching // 2
actual_matching = max_matching // 2
answer = (N-1) - 2 * actual_matching
print(answer)
if __name__ == "__main__":
main()
lam6er