結果
問題 |
No.1526 Sum of Mex 2
|
ユーザー |
![]() |
提出日時 | 2025-04-15 23:23:37 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,226 bytes |
コンパイル時間 | 203 ms |
コンパイル使用メモリ | 82,288 KB |
実行使用メモリ | 109,476 KB |
最終ジャッジ日時 | 2025-04-15 23:25:04 |
合計ジャッジ時間 | 7,321 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 TLE * 1 -- * 1 |
ソースコード
import sys from collections import defaultdict def main(): sys.setrecursionlimit(1 << 25) n, *rest = map(int, sys.stdin.read().split()) a = rest[:n] pos = defaultdict(list) for i, x in enumerate(a): pos[x].append(i) max_x = 0 while True: if (max_x + 1) in pos and len(pos[max_x + 1]) > 0: max_x += 1 else: break total = 0 # For x in 1..max_x + 1 for x in range(1, max_x + 2): required = x - 1 if required == 0: # All subarrays that do not contain 1 # Which is the total subarrays minus those containing 1 if 1 not in pos or len(pos[1]) == 0: count = n * (n + 1) // 2 total += x * count continue else: # Split the array into segments not containing 1 prev = -1 cnt = 0 for p in pos[1]: left = prev + 1 right = p - 1 if left <= right: length = right - left + 1 cnt += length * (length + 1) // 2 prev = p # After the last occurrence of 1 left = prev + 1 right = n - 1 if left <= right: length = right - left + 1 cnt += length * (length + 1) // 2 total += x * cnt continue # Check if all 1..required are present valid = True for i in range(1, required + 1): if i not in pos or len(pos[i]) == 0: valid = False break if not valid: continue # Now, x is valid. Compute the segments where x is not present if x not in pos or len(pos[x]) == 0: # The entire array is the segment # Compute the number of subarrays containing all 1..required cnt = 0 freq = defaultdict(int) left = 0 missing = required current_missing = required have = set() for right in range(n): num = a[right] if 1 <= num <= required: if num not in have: current_missing -= 1 have.add(num) while current_missing == 0: cnt += n - right num_left = a[left] if 1 <= num_left <= required: have.remove(num_left) current_missing += 1 # Check if there are more occurrences found = False for i in range(left + 1, right + 1): if 1 <= a[i] <= required and a[i] == num_left: found = True break if not found: pass else: current_missing -= 1 have.add(num_left) left += 1 total += x * cnt continue # Split the array into segments where x is not present segments = [] prev = -1 for p in pos[x]: if prev + 1 <= p - 1: segments.append((prev + 1, p - 1)) prev = p if prev + 1 <= n - 1: segments.append((prev + 1, n - 1)) cnt = 0 for seg_start, seg_end in segments: if seg_start > seg_end: continue # Compute the number of subarrays in this segment that contain all 1..required # Using sliding window freq = defaultdict(int) left = seg_start current_missing = required have = set() temp_cnt = 0 for right in range(seg_start, seg_end + 1): num = a[right] if 1 <= num <= required: if num not in have: current_missing -= 1 have.add(num) # Shrink left as much as possible while current_missing == 0 and left <= right: temp_cnt += seg_end - right + 1 num_left = a[left] if 1 <= num_left <= required: have.remove(num_left) current_missing += 1 # Check if there are more occurrences in [left+1, right] found = False for i in range(left + 1, right + 1): if 1 <= a[i] <= required and a[i] == num_left: found = True break if found: have.add(num_left) current_missing -= 1 else: pass left += 1 cnt += temp_cnt total += x * cnt print(total) if __name__ == '__main__': main()