結果
問題 |
No.577 Prime Powerful Numbers
|
ユーザー |
![]() |
提出日時 | 2025-04-15 23:39:44 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,410 bytes |
コンパイル時間 | 291 ms |
コンパイル使用メモリ | 82,264 KB |
実行使用メモリ | 144,648 KB |
最終ジャッジ日時 | 2025-04-15 23:41:28 |
合計ジャッジ時間 | 6,663 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 9 |
ソースコード
import math def sieve(limit): sieve = [True] * (limit + 1) sieve[0] = sieve[1] = False for i in range(2, int(math.isqrt(limit)) + 1): if sieve[i]: sieve[i*i : limit+1 : i] = [False] * len(sieve[i*i : limit+1 : i]) primes = [i for i, is_p in enumerate(sieve) if is_p] return primes def is_prime(n): if n <= 1: return False elif n <= 3: return True elif n % 2 == 0: return False d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for a in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]: if a >= n: continue x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True def is_prime_power(m): if m < 2: return False if is_prime(m): return True max_b = m.bit_length() for b in range(max_b, 1, -1): low = 2 high = int(m ** (1 / b)) + 2 while low <= high: mid = (low + high) // 2 power = 1 overflow = False for _ in range(b): power *= mid if power > m: overflow = True break if overflow: high = mid - 1 continue if power < m: low = mid + 1 elif power > m: high = mid - 1 else: if is_prime(mid): return True else: break return False primes_1e5 = sieve(10**5) small_primes = sieve(10**6) prime_powers_1e6 = set() for p in small_primes: a = 1 current = p while current <= 1e6: prime_powers_1e6.add(current) a += 1 current = p ** a if current > 1e6: break def solve(): import sys input = sys.stdin.read().split() Q = int(input[0]) cases = list(map(int, input[1:Q+1])) for N in cases: found = False a = 1 while True: x = 2 ** a if x >= N: break y = N - x if y < 2: a += 1 continue if is_prime_power(y): found = True break a += 1 if found: print("Yes") continue for p in primes_1e5: if p == 2: continue a = 1 current = p while current <= N: x = current y = N - x if y < 2: break if is_prime_power(y): found = True break a += 1 current *= p if current > N: break if found: break if found: print("Yes") continue for y in prime_powers_1e6: if y >= N: continue x = N - y if x < 2: continue if is_prime_power(x): found = True break if found: print("Yes") continue print("No") solve()