結果
問題 |
No.694 square1001 and Permutation 3
|
ユーザー |
![]() |
提出日時 | 2025-04-15 23:54:31 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 1,638 bytes |
コンパイル時間 | 327 ms |
コンパイル使用メモリ | 82,012 KB |
実行使用メモリ | 272,340 KB |
最終ジャッジ日時 | 2025-04-15 23:55:34 |
合計ジャッジ時間 | 8,083 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 11 MLE * 2 |
ソースコード
import bisect from collections import defaultdict class FenwickTree: def __init__(self, size): self.n = size self.tree = [0] * (self.n + 1) def update(self, idx, delta): while idx <= self.n: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def main(): import sys input = sys.stdin.read().split() ptr = 0 N = int(input[ptr]) ptr += 1 A = list(map(int, input[ptr:ptr+N])) ptr += N # Compute x_i for each element sorted_A = sorted(A) x = [0] * N for i in range(N): a = A[i] x[i] = bisect.bisect_left(sorted_A, a) # Compute frequency map freq = defaultdict(int) for a in A: freq[a] += 1 # Compute initial inversion count using Fenwick Tree sorted_unique = sorted(freq.keys()) rank_map = {v: i+1 for i, v in enumerate(sorted_unique)} max_rank = len(sorted_unique) ft = FenwickTree(max_rank) inv_count = 0 for a in reversed(A): r = rank_map[a] inv_count += ft.query(r - 1) ft.update(r, 1) # Compute inversion counts for all rotations inv = [0] * N inv[0] = inv_count for k in range(1, N): prev_k = k - 1 a = A[prev_k] x_i = x[prev_k] y_i = freq[a] - 1 delta = (N - 1) - 2 * x_i - y_i inv[k] = inv[k - 1] + delta # Output the results for cnt in inv: print(cnt) if __name__ == "__main__": main()