結果
問題 |
No.2005 Sum of Power Sums
|
ユーザー |
![]() |
提出日時 | 2025-04-16 00:00:32 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,842 bytes |
コンパイル時間 | 507 ms |
コンパイル使用メモリ | 81,448 KB |
実行使用メモリ | 286,216 KB |
最終ジャッジ日時 | 2025-04-16 00:02:46 |
合計ジャッジ時間 | 9,892 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 12 TLE * 1 -- * 5 |
ソースコード
MOD = 998244353 def main(): import sys input = sys.stdin.read().split() idx = 0 N = int(input[idx]); idx +=1 M = int(input[idx]); idx +=1 Ks = list(map(int, input[idx:idx+N])) idx += N max_K = max(Ks) if Ks else 0 max_fact = 2 * 10**5 + 5000 # Precompute factorials and inverse factorials fact = [1] * (max_fact + 1) for i in range(1, max_fact + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_fact + 1) inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD) for i in range(max_fact-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD # Precompute Stirling numbers of the second kind up to 5000 max_st = 5000 stirling = [ [0]*(max_st+1) for _ in range(max_st+1) ] stirling[0][0] = 1 for n in range(1, max_st+1): for k in range(1, n+1): stirling[n][k] = (k * stirling[n-1][k] + stirling[n-1][k-1]) % MOD r = M % MOD part1 = 1 for i in range(1, N+1): part1 = part1 * (r + i) % MOD total = 0 for K in Ks: res = 0 part2 = [1]*(K+1) for m in range(1, K+1): part2[m] = part2[m-1] * (r - (m-1)) % MOD for m in range(0, K+1): S_km = stirling[K][m] if S_km == 0: continue term = S_km * fact[m] % MOD numerator = part1 * part2[m] % MOD nm = N + m if nm > max_fact: denom = 1 for k in range(1, nm+1): denom = denom * k % MOD denom = pow(denom, MOD-2, MOD) else: denom = inv_fact[nm] comb = numerator * denom % MOD res = (res + term * comb) % MOD total = (total + res) % MOD print(total % MOD) if __name__ == '__main__': main()