結果
問題 |
No.2959 Dolls' Tea Party
|
ユーザー |
![]() |
提出日時 | 2025-04-16 00:06:11 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,611 bytes |
コンパイル時間 | 292 ms |
コンパイル使用メモリ | 82,604 KB |
実行使用メモリ | 157,576 KB |
最終ジャッジ日時 | 2025-04-16 00:07:49 |
合計ジャッジ時間 | 6,455 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 5 TLE * 1 -- * 27 |
ソースコード
import sys MOD = 998244353 def main(): sys.setrecursionlimit(1 << 25) N, K = map(int, sys.stdin.readline().split()) A = list(map(int, sys.stdin.readline().split())) # Precompute factorial and inverse factorial up to 1300 max_m = K fact = [1] * (max_m + 1) for i in range(1, max_m + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_m + 1) inv_fact[max_m] = pow(fact[max_m], MOD-2, MOD) for i in range(max_m-1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD # Precompute phi for all numbers up to K max_phi = K phi = list(range(max_phi + 1)) for p in range(2, max_phi + 1): if phi[p] == p: for multiple in range(p, max_phi + 1, p): phi[multiple] = phi[multiple] // p * (p - 1) # Function to get all divisors of K def get_divisors(n): divisors = set() for i in range(1, int(n**0.5) + 1): if n % i == 0: divisors.add(i) divisors.add(n // i) return sorted(divisors) divisors = get_divisors(K) total = 0 for d in divisors: m = K // d if m == 0: continue B = [a // d for a in A] k = 0 S = [] for i in range(N): if B[i] >= m: k += 1 else: S.append(B[i]) # Compute e^{kx} mod x^{m+1} e_kx = [0] * (m + 1) for c in range(m + 1): e_kx[c] = pow(k, c, MOD) * inv_fact[c] % MOD # Compute product of polynomials for S dp = [0] * (m + 1) dp[0] = 1 for b in S: max_c = min(b, m) poly = [inv_fact[c] for c in range(max_c + 1)] new_dp = [0] * (m + 1) for i in range(m + 1): if dp[i] == 0: continue for c in range(0, max_c + 1): if i + c > m: break new_dp[i + c] = (new_dp[i + c] + dp[i] * poly[c]) % MOD dp = new_dp # Multiply by e_kx final = [0] * (m + 1) for i in range(m + 1): if dp[i] == 0: continue for j in range(m + 1 - i): final[i + j] = (final[i + j] + dp[i] * e_kx[j]) % MOD coeff = final[m] ways = coeff * fact[m] % MOD total = (total + ways * phi[d]) % MOD inv_K = pow(K, MOD-2, MOD) ans = total * inv_K % MOD print(ans) if __name__ == '__main__': main()