結果
問題 | No.2075 GCD Subsequence |
ユーザー |
![]() |
提出日時 | 2025-04-16 00:17:27 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 1,719 bytes |
コンパイル時間 | 333 ms |
コンパイル使用メモリ | 82,220 KB |
実行使用メモリ | 138,864 KB |
最終ジャッジ日時 | 2025-04-16 00:19:27 |
合計ジャッジ時間 | 26,354 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 17 TLE * 11 |
ソースコード
import sys from collections import defaultdict MOD = 998244353 def main(): # Precompute smallest prime factors (spf) up to 1e6 max_spf = 10**6 + 1 spf = list(range(max_spf)) for i in range(2, int(max_spf**0.5) + 1): if spf[i] == i: for j in range(i*i, max_spf, i): if spf[j] == j: spf[j] = i def factorize(x): if x == 1: return [] factors = set() while x != 1: p = spf[x] factors.add(p) while x % p == 0: x //= p return sorted(factors) input = sys.stdin.read().split() n = int(input[0]) a = list(map(int, input[1:n+1])) sum_total = 0 cnt = defaultdict(int) ans = 0 for num in a: primes = factorize(num) m = len(primes) sum_coprimes = 0 # Iterate over all subsets of primes (including empty subset) for mask in range(1 << m): bits = bin(mask).count('1') d = 1 for j in range(m): if mask & (1 << j): d *= primes[j] mu = (-1) ** bits if mask != 0 else 1 sum_coprimes = (sum_coprimes + mu * cnt[d]) % MOD # Compute S and dp_i S = (sum_total - sum_coprimes) % MOD dp_i = (S + 1) % MOD ans = (ans + dp_i) % MOD # Update cnt for all subsets for mask in range(1 << m): d = 1 for j in range(m): if mask & (1 << j): d *= primes[j] cnt[d] = (cnt[d] + dp_i) % MOD sum_total = (sum_total + dp_i) % MOD print(ans % MOD) if __name__ == "__main__": main()