結果
| 問題 |
No.2075 GCD Subsequence
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 00:19:41 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 1,719 bytes |
| コンパイル時間 | 202 ms |
| コンパイル使用メモリ | 81,404 KB |
| 実行使用メモリ | 138,672 KB |
| 最終ジャッジ日時 | 2025-04-16 00:22:10 |
| 合計ジャッジ時間 | 18,144 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 TLE * 11 |
ソースコード
import sys
from collections import defaultdict
MOD = 998244353
def main():
# Precompute smallest prime factors (spf) up to 1e6
max_spf = 10**6 + 1
spf = list(range(max_spf))
for i in range(2, int(max_spf**0.5) + 1):
if spf[i] == i:
for j in range(i*i, max_spf, i):
if spf[j] == j:
spf[j] = i
def factorize(x):
if x == 1:
return []
factors = set()
while x != 1:
p = spf[x]
factors.add(p)
while x % p == 0:
x //= p
return sorted(factors)
input = sys.stdin.read().split()
n = int(input[0])
a = list(map(int, input[1:n+1]))
sum_total = 0
cnt = defaultdict(int)
ans = 0
for num in a:
primes = factorize(num)
m = len(primes)
sum_coprimes = 0
# Iterate over all subsets of primes (including empty subset)
for mask in range(1 << m):
bits = bin(mask).count('1')
d = 1
for j in range(m):
if mask & (1 << j):
d *= primes[j]
mu = (-1) ** bits if mask != 0 else 1
sum_coprimes = (sum_coprimes + mu * cnt[d]) % MOD
# Compute S and dp_i
S = (sum_total - sum_coprimes) % MOD
dp_i = (S + 1) % MOD
ans = (ans + dp_i) % MOD
# Update cnt for all subsets
for mask in range(1 << m):
d = 1
for j in range(m):
if mask & (1 << j):
d *= primes[j]
cnt[d] = (cnt[d] + dp_i) % MOD
sum_total = (sum_total + dp_i) % MOD
print(ans % MOD)
if __name__ == "__main__":
main()
lam6er