結果

問題 No.1195 数え上げを愛したい(文字列編)
ユーザー lam6er
提出日時 2025-04-16 00:21:16
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 2,107 bytes
コンパイル時間 530 ms
コンパイル使用メモリ 81,916 KB
実行使用メモリ 289,728 KB
最終ジャッジ日時 2025-04-16 00:23:11
合計ジャッジ時間 8,724 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 25
権限があれば一括ダウンロードができます

ソースコード

diff #

MOD = 998244353
ROOT = 3

def ntt(a, inverse=False):
    n = len(a)
    logn = (n - 1).bit_length()
    rev = [0] * n
    for i in range(n):
        rev[i] = rev[i >> 1] >> 1
        if i & 1:
            rev[i] |= n >> 1
        if i < rev[i]:
            a[i], a[rev[i]] = a[rev[i]], a[i]
    for m in range(1, logn + 1):
        m_h = 1 << (m - 1)
        w_m = pow(ROOT, (MOD - 1) // (1 << m), MOD)
        if inverse:
            w_m = pow(w_m, MOD - 2, MOD)
        for i in range(0, n, 1 << m):
            w = 1
            for j in range(i, i + m_h):
                x = a[j]
                y = a[j + m_h] * w % MOD
                a[j] = (x + y) % MOD
                a[j + m_h] = (x - y) % MOD
                w = w * w_m % MOD
    if inverse:
        inv_n = pow(n, MOD - 2, MOD)
        for i in range(n):
            a[i] = a[i] * inv_n % MOD
    return a

def convolve(a, b):
    len_a = len(a)
    len_b = len(b)
    len_c = len_a + len_b - 1
    n = 1 << (len_c.bit_length()) if len_c != 0 else 1
    a = a + [0] * (n - len_a)
    b = b + [0] * (n - len_b)
    a = ntt(a)
    b = ntt(b)
    c = [a[i] * b[i] % MOD for i in range(n)]
    c = ntt(c, inverse=True)
    return c[:len_c]

def main():
    import sys
    from collections import Counter
    s = sys.stdin.readline().strip()
    cnt = Counter(s)
    chars = [v for v in cnt.values() if v > 0]
    max_n = 3 * 10**5
    
    # Precompute factorial and inverse factorial
    fact = [1] * (max_n + 1)
    for i in range(1, max_n + 1):
        fact[i] = fact[i-1] * i % MOD
    inv_fact = [1] * (max_n + 1)
    inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD)
    for i in range(max_n - 1, -1, -1):
        inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
    
    dp = [1]
    for a in chars:
        g = [inv_fact[k] for k in range(a + 1)]
        new_dp = convolve(dp, g)
        new_dp = new_dp[:max_n + 1]
        dp = new_dp
    
    ans = 0
    for n in range(1, len(dp)):
        if n > max_n:
            break
        term = fact[n] * dp[n] % MOD
        ans = (ans + term) % MOD
    print(ans)

if __name__ == "__main__":
    main()
0