結果
| 問題 |
No.1195 数え上げを愛したい(文字列編)
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 00:21:16 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,107 bytes |
| コンパイル時間 | 530 ms |
| コンパイル使用メモリ | 81,916 KB |
| 実行使用メモリ | 289,728 KB |
| 最終ジャッジ日時 | 2025-04-16 00:23:11 |
| 合計ジャッジ時間 | 8,724 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | TLE * 1 -- * 25 |
ソースコード
MOD = 998244353
ROOT = 3
def ntt(a, inverse=False):
n = len(a)
logn = (n - 1).bit_length()
rev = [0] * n
for i in range(n):
rev[i] = rev[i >> 1] >> 1
if i & 1:
rev[i] |= n >> 1
if i < rev[i]:
a[i], a[rev[i]] = a[rev[i]], a[i]
for m in range(1, logn + 1):
m_h = 1 << (m - 1)
w_m = pow(ROOT, (MOD - 1) // (1 << m), MOD)
if inverse:
w_m = pow(w_m, MOD - 2, MOD)
for i in range(0, n, 1 << m):
w = 1
for j in range(i, i + m_h):
x = a[j]
y = a[j + m_h] * w % MOD
a[j] = (x + y) % MOD
a[j + m_h] = (x - y) % MOD
w = w * w_m % MOD
if inverse:
inv_n = pow(n, MOD - 2, MOD)
for i in range(n):
a[i] = a[i] * inv_n % MOD
return a
def convolve(a, b):
len_a = len(a)
len_b = len(b)
len_c = len_a + len_b - 1
n = 1 << (len_c.bit_length()) if len_c != 0 else 1
a = a + [0] * (n - len_a)
b = b + [0] * (n - len_b)
a = ntt(a)
b = ntt(b)
c = [a[i] * b[i] % MOD for i in range(n)]
c = ntt(c, inverse=True)
return c[:len_c]
def main():
import sys
from collections import Counter
s = sys.stdin.readline().strip()
cnt = Counter(s)
chars = [v for v in cnt.values() if v > 0]
max_n = 3 * 10**5
# Precompute factorial and inverse factorial
fact = [1] * (max_n + 1)
for i in range(1, max_n + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_n + 1)
inv_fact[max_n] = pow(fact[max_n], MOD-2, MOD)
for i in range(max_n - 1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
dp = [1]
for a in chars:
g = [inv_fact[k] for k in range(a + 1)]
new_dp = convolve(dp, g)
new_dp = new_dp[:max_n + 1]
dp = new_dp
ans = 0
for n in range(1, len(dp)):
if n > max_n:
break
term = fact[n] * dp[n] % MOD
ans = (ans + term) % MOD
print(ans)
if __name__ == "__main__":
main()
lam6er