結果
| 問題 |
No.2445 奇行列式
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 01:04:54 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,044 bytes |
| コンパイル時間 | 418 ms |
| コンパイル使用メモリ | 82,456 KB |
| 実行使用メモリ | 94,688 KB |
| 最終ジャッジ日時 | 2025-04-16 01:07:17 |
| 合計ジャッジ時間 | 6,256 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 5 WA * 8 TLE * 1 -- * 6 |
ソースコード
n, B = map(int, input().split())
mod = 2 * B
A = [list(map(int, input().split())) for _ in range(n)]
# Compute permanent mod mod using dynamic programming
dp = [0] * (1 << n)
dp[0] = 1
for row in range(n):
new_dp = [0] * (1 << n)
for mask in range(1 << n):
if bin(mask).count('1') != row:
continue
for col in range(n):
if not (mask & (1 << col)):
new_mask = mask | (1 << col)
new_dp[new_mask] = (new_dp[new_mask] + dp[mask] * A[row][col]) % mod
dp = new_dp
permanent = dp[(1 << n) - 1]
# Compute determinant mod mod using Gaussian elimination
def extended_gcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = extended_gcd(b % a, a)
return (g, x - (b // a) * y, y)
def determinant_mod(matrix, mod):
n = len(matrix)
mat = [row.copy() for row in matrix]
for i in range(n):
for j in range(n):
mat[i][j] %= mod
det_sign = 1
for i in range(n):
# Find pivot
pivot_row = -1
for j in range(i, n):
if mat[j][i] % mod != 0:
pivot_row = j
break
if pivot_row == -1:
return 0
if pivot_row != i:
mat[i], mat[pivot_row] = mat[pivot_row], mat[i]
det_sign *= -1
# Compute the inverse of the pivot
a = mat[i][i]
g, x, y = extended_gcd(a, mod)
if g != 1:
return 0
inv_a = x % mod
# Eliminate other rows
for j in range(i+1, n):
current_val = mat[j][i]
if current_val == 0:
continue
factor = (current_val * inv_a) % mod
for k in range(i, n):
mat[j][k] = (mat[j][k] - factor * mat[i][k]) % mod
# Compute product of diagonal elements
det = 1
for i in range(n):
det = (det * mat[i][i]) % mod
det = (det * det_sign) % mod
return det
det = determinant_mod(A, mod)
ans = (permanent - det) // 2
ans %= B
print(ans)
lam6er