結果

問題 No.1316 Maximum Minimum Spanning Tree
ユーザー Jerry Rowe (cooluo)
提出日時 2025-04-16 14:04:49
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 12 ms / 2,000 ms
コード長 10,441 bytes
コンパイル時間 3,602 ms
コンパイル使用メモリ 287,748 KB
実行使用メモリ 9,828 KB
最終ジャッジ日時 2025-04-16 14:04:55
合計ジャッジ時間 6,085 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 78
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
// #include <bits/extc++.h>
using namespace std;

#define ll long long
#define ul unsigned ll
#define LL __int128_t
#define UL __uint128_t
#define db double
#define DB long db
#define pii pair<int, int>
#define fi first
#define se second
#define mkpr make_pair
#define vi vector<int>
#define vii vector<pii>
#define rsz resize
#define ep emplace
#define pb pop_back
#define eb emplace_back
#define all(c) (c).begin(), (c).end()
#define disc(c) (sort(all(c)), (c).rsz(unique(all(c)) - (c).begin()))
#define ers(S, x) ((S).erase((S).find(x)))
#define bit(k) (1 << (k))
#define Bit(k) (1ll << (k))
#define BIT(k) ((LL)1 << (k))
#define lowbit(x) ((x) & -(x))
#define bin(s, k) ((s) >> (k) & 1)
#define lg2(x) (31 - __builtin_clz(x))
#define LG2(x) (63 - __builtin_clzll(x))
#define highbit(x) bit(lg2(x))
#define highbitll(x) Bit(LG2(x))
#define popcnt(x) __builtin_popcount(x)
#define popcntll(x) __builtin_popcountll(x)
#define mem(a, x) memset(a, x, sizeof(a))
#define req(i, l, r) for (int i(l), i##End(r); i < i##End; i = -~i)
#define qer(i, r, l) for (int i(r), i##End(l); i > i##End; i = ~-i)
#define rep(i, l, r) for (int i(l), i##End(r); i <= i##End; i = -~i)
#define per(i, r, l) for (int i(r), i##End(l); i >= i##End; i = ~-i)

// #define FILERR

#ifdef JYR
#include "debug.h"
#define errm(x, ...) fprintf(stderr, x, ##__VA_ARGS__)
#define errs(x, ...) errm(x "\n", ##__VA_ARGS__)
#else
#define dbg(...) (__VA_ARGS__)
#define dbgArr(...) (__VA_ARGS__)
#define errm(x, ...) (x, ##__VA_ARGS__)
#define errs(x, ...) (x, ##__VA_ARGS__)
#endif

#define __

template<typename T, typename U> void chkmx(T &_a, U _b) { if (_a < _b) _a = _b; }
template<typename T, typename U> void chkmn(T &_a, U _b) { if (_b < _a) _a = _b; }
template<typename T, typename U> T OxO(T _a, U _b) { return _a == _b ? -1 : _a; }
template<typename T> ll sq(T x) { return (ll)x * x; }

bool Mbe;

template <int MOD> struct modint {
    int num;
    const static __uint128_t brt = ((__uint128_t)(1) << (64)) / MOD;
    modint() { num = 0; }
    modint(int x) { num = x % MOD; }
    modint(ll x) { num = x % MOD; }
    modint<MOD> operator=(int x) {
        num = x % MOD;
        return (*this);
    }
    modint<MOD> operator=(ll x) {
        num = x % MOD;
        return (*this);
    }
    modint<MOD> operator+(modint<MOD> c) const {
        ll x = num + c.num;
        return x >= MOD ? x - MOD : x;
    }
    template <typename T> modint<MOD> operator+(T c) const {
        return (*this) + modint<MOD>(c);
    }
    modint<MOD> operator-(modint<MOD> c) const {
        ll x = num - c.num;
        return x < 0 ? x + MOD : x;
    }
    template <typename T> modint<MOD> operator-(T c) const {
        return (*this) - modint<MOD>(c);
    }
    modint<MOD> operator*(modint<MOD> c) const {
        ll x = (ll)num * c.num;
        x = x - MOD * (brt * x >> 64);
        while (x >= MOD) x -= MOD;
        return x;
    }
    template <typename T> modint<MOD> operator*(T c) const {
        return (*this) * modint<MOD>(c);
    }
    
    modint<MOD> qpow(ll b) const {
        modint<MOD> ml = 1, bs = *this;
        while (b) {
            if (b & 1) ml *= bs;
            bs *= bs, b >>= 1;
        } return ml;
    }
    modint<MOD> inv() const { return qpow(MOD - 2); }
    modint<MOD> operator/(modint<MOD> c) { return (*this) * c.inv(); }
    template <typename T> modint<MOD> operator/(T c) const {
        return (*this) / modint<MOD>(c);
    }
    // operator int() { return num; }

    modint<MOD> operator+=(modint<MOD> c) { return (*this) = (*this) + c; }
    modint<MOD> operator-=(modint<MOD> c) { return (*this) = (*this) - c; }
    template <typename T> modint<MOD> operator*=(T c) {
        return (*this) = (*this) * c;
    }
    modint<MOD> operator/=(modint<MOD> c) { return (*this) = (*this) / c; }
    modint<MOD> operator-() { return MOD - num; }
    friend ostream& operator<<(ostream& w, modint<MOD> x) {
        w << x.num;
        return w;
    }
    friend istream& operator>>(istream& w, modint<MOD> x) {
        w >> x.num;
        x.num %= MOD;
        return w;
    }
    bool operator==(modint<MOD> x) { return num == x.num; }
};

template <typename T, int MOD>
modint<MOD> operator*(T a, modint<MOD> b) { return b * a; }
template <typename T, int MOD>
modint<MOD> operator/(T a, modint<MOD> b) { return b.inv() * a; }

struct FastIO {
    char buf[1 << 20], *p1, *p2;
    char puf[1 << 20], *pf;
    
    FastIO() : p1(buf), p2(buf), pf(puf) {}
    ~FastIO() { fwrite(puf, 1, pf - puf, stdout); }
    
    char gc() {
        if (p1 == p2) p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin);
        return p1 == p2 ? EOF : *p1++;
    }
    
    bool blank(char c) { return c == ' ' || c == '\r' || c == '\n' || c == '\t'; }
    
    char rd() {
        char c = gc(); while (blank(c)) c = gc();
        return c;
    }
    
    template<typename T> T rd() {
        T x = 0; int f = 0; char c = gc();
        while (!isdigit(c)) f = (c == '-'), c = gc();
        while (isdigit(c)) x = (x << 1) + (x << 3) + (c - '0'), c = gc();
        return f ? -x : x;
    }
    
    int rds(char *s) {
        char c = gc(), *S = s;
        while (blank(c)) c = gc();
        while (!blank(c) && c != EOF) *s++ = c, c = gc();
        return *s = 0, abs(s - S);
    }
    
    int rdl(char *s) {
        char c = gc(), *S = s;
        while (c == '\r' || c == '\n') c = gc();
        while (c != '\r' && c != '\n' && c != EOF) *s++ = c, c = gc();
        return *s = 0, abs(s - S);
    }
    
    void rd(char &c) { c = rd(); }
    
    void rd(char *s) {
        char c = gc();
        while (blank(c)) c = gc();
        if (c == EOF) { *s = 0; return; }
        while (!blank(c) && c != EOF) *s++ = c, c = gc();
        *s = 0;
    }
    
    template<int MOD> void rd(modint<MOD> &x) { x = rd<int>(); }
    
    template<typename T> void rd(T &x) {
        x = 0; int f = 0; char c = gc();
        while (!isdigit(c)) f = (c == '-'), c = gc();
        while (isdigit(c)) x = (x << 1) + (x << 3) + (c - '0'), c = gc();
        if (f) x = -x;
    }
    
    template<typename T, typename... Ts>
    void rd(T& x, Ts&... xs) { rd(x), rd(xs...); }
    
    template<typename T>
    void rda(T* x, int l, int r) { rep(i, l, r) rd(x[i]); }
    
    template<typename T>
    void rda(T* x, int n) { rep(i, 1, n) rd(x[i]); }
    
    void pc(const char &c) {
        if (pf - puf == 1 << 20) fwrite(pf = puf, 1, 1 << 20, stdout);
        *pf++ = c;
    }
    
    void prt(char c) { pc(c); }
    void prt(char* s) { while (*s) pc(*s++); }
    void prt(const char* s) { while (*s) pc(*s++); }
    void prt(bool b) { pc(b ? '1' : '0'); }
    void prt(string s) { for (auto &&c : s) pc(c); }
    
    template<typename T> void prt(T x) {
        static int st[41], tp = 0;
        if (x == 0) { pc('0'); return; }
        if (x < 0) x = -x, pc('-');
        while (x) st[++tp] = x % 10, x /= 10;
        while (tp) pc(st[tp--] + '0');
    }
    
    template<int MOD> void prt(modint<MOD> x) { prt(x.num); }
    
    template<typename T> void prt(T *x) { while (*x) pc(*x++); }
    
    template<typename T, typename... Ts>
    void prt(T x, Ts... xs) { prt(x), prt(xs...); }
    
    template<typename T> void prb(T x) { prt(x, ' '); }
    
    template<typename T, typename... Ts>
    void prb(T x, Ts... xs) { prt(x, ' '), prb(xs...); }
    
    template<typename T> void prd(T x) { prt(x, '\n'); }
    
    template<typename T, typename... Ts>
    void prd(T x, Ts... xs) { prt(x, ' '), prd(xs...); }
} IO;

#define rd IO.rd
#define rda IO.rda
#define rds IO.rds
#define rdl IO.rdl
#define ri rd<int>()
#define rl rd<ll>()
#define prt IO.prt
#define prs(...) prt(__VA_ARGS__, '\n')
#define prb IO.prb
#define prd IO.prd
#define edl IO.pc('\n')

// #define MC

#define N 55
#define M 5000005
#define mod 998244353
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f

using mint = modint<mod>;

template<typename T>
struct MaxFlow {
    int s, t, hd[N], ed[M], nt[M], cnt = 1;
    int ra[N], ds[N], qu[N], lh, rt;
    T co[M];

    void init(int _S, int _T) {
        s = _S, t = _T, cnt = 1;
        rep(i, s, t) hd[i] = 0;
    }

    void addeg(int u, int v, T w) {
        ed[++cnt] = v, co[cnt] = w, nt[cnt] = hd[u], hd[u] = cnt;
    }

    void add(int u, int v, T w) {
        addeg(u, v, w), addeg(v, u, 0);
    }

    bool bfs() {
        rep(i, s, t) ds[i] = -1; ds[s] = 0;
        ra[s] = hd[s], qu[lh = rt = 1] = s;
        while (lh <= rt) {
            int u = qu[lh++];
            for (int i = hd[u]; i; i = nt[i]) {
                int v = ed[i]; T w = co[i];
                if (!w || ds[v] != -1) continue;
                ds[v] = ds[u] + 1;
                if (v == t) return 1;
                qu[++rt] = v, ra[v] = hd[v];
            }
        }
        return 0;
    }

    T fdfl(int u, T lt) {
        if (u == t) return lt;
        T fl = 0;
        for (int i = ra[u]; i && fl < lt; i = nt[i]) {
            int v = ed[i]; T w = co[i]; ra[u] = i;
            if (!w || ds[v] != ds[u] + 1) continue;
            T x = fdfl(v, min(w, lt - fl));
            if (!x) ds[v] = -1;
            else fl += x, co[i] -= x, co[i ^ 1] += x;
        }
        return fl;
    }

    T dinic() {
        T res = 0, fl;
        while (bfs()) while ((fl = fdfl(s, INF))) res += fl;
        return res;
    }
};
MaxFlow<ll> G;

int n, m;
ll k, su, ans;
struct edge { int u, v; ll c, d, y; };
vector<edge> E;

void mslv() {
    rd(n, m, k);
    rep(i, 1, m) { int u, v, c, d; rd(u, v, c, d), E.eb(edge{u, v, c, d, 0}); }
    sort(all(E), [](edge x, edge y) { return x.c < y.c; });
    for (auto &[u, v, c, d, y] : E) {
        G.init(0, n + 1);
        for (auto [U, V, C, D, Y] : E) G.add(0, U, Y), G.add(U, V, Y);
        rep(i, 1, n) G.add(i, n + 1, k);
        G.add(0, u, k * n), G.add(0, v, k * n);
        y = min(d, G.dinic() - k - su), su += y, ans += c * y;
    } if (su < k * (n - 1)) ans = -1; prs(ans);
}

void mprw() {}

bool Med;

int main() {
    #ifdef JYR
    errs("\033[1;34mRunning!\033[0;m");
    freopen("Test.in", "r", stdin);
    freopen("Test.out", "w", stdout);
    #ifdef FILERR
    freopen("Test.err", "w", stderr);
    #endif
    #endif
    mprw();
    #ifdef MC
    int _ = ri;
    while (_--) mslv();
    #else
    mslv();
    #endif
    #ifdef JYR
    errm("%.3lfMB ", abs(&Med - &Mbe) / 1048576.);
    errm("%.0lfms\n", clock() * 1000. / CLOCKS_PER_SEC);
    #endif
    return 0;
}
0