結果
| 問題 |
No.1346 Rectangle
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 15:30:23 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,903 bytes |
| コンパイル時間 | 686 ms |
| コンパイル使用メモリ | 81,792 KB |
| 実行使用メモリ | 76,416 KB |
| 最終ジャッジ日時 | 2025-04-16 15:34:02 |
| 合計ジャッジ時間 | 1,865 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 WA * 16 |
ソースコード
import math
import random
def is_prime(n):
if n < 2:
return False
for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]:
if n % p == 0:
return n == p
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
if a >= n:
continue
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n):
if n % 2 == 0:
return 2
if n % 3 == 0:
return 3
if n % 5 == 0:
return 5
while True:
c = random.randint(1, n-1)
f = lambda x: (pow(x, 2, n) + c) % n
x, y, d = 2, 2, 1
while d == 1:
x = f(x)
y = f(f(y))
d = math.gcd(abs(x - y), n)
if d != n:
return d
def factor(n):
factors = []
def _factor(n):
if n == 1:
return
if is_prime(n):
factors.append(n)
return
d = pollards_rho(n)
_factor(d)
_factor(n // d)
_factor(n)
return sorted(factors)
def is_prime_power(n):
if n == 1:
return False
factors = factor(n)
return len(set(factors)) == 1
def integer_kth_root(n, k):
if n <= 0:
return 0
if k == 1:
return n
low = 1
high = n
while low <= high:
mid = (low + high) // 2
try:
powered = pow(mid, k)
except OverflowError:
powered = float('inf')
if powered == n:
return mid
elif powered < n:
low = mid + 1
else:
high = mid - 1
return high
def find_largest_prime_less_than(n):
if n <= 2:
return 0
candidate = n - 1
while candidate >= 2:
if is_prime(candidate):
return candidate
candidate -= 1
return 0
def main():
N = int(input().strip())
if N == 2:
print("INF")
return
m = N - 1
if is_prime_power(m):
print(m)
return
max_pp = 0
max_k = int(math.log2(m)) + 1 if m > 1 else 1
for k in range(max_k, 1, -1):
p = integer_kth_root(m, k)
if p < 2:
continue
while True:
powered = pow(p, k)
if powered < m:
break
p -= 1
if p < 2:
break
if p < 2:
continue
if is_prime(p):
candidate = pow(p, k)
if candidate > max_pp:
max_pp = candidate
largest_prime = find_largest_prime_less_than(m)
if largest_prime > max_pp:
max_pp = largest_prime
print(max_pp)
if __name__ == "__main__":
main()
lam6er