結果
| 問題 |
No.1164 GCD Products hard
|
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 15:33:07 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 1,898 bytes |
| コンパイル時間 | 342 ms |
| コンパイル使用メモリ | 81,948 KB |
| 実行使用メモリ | 359,936 KB |
| 最終ジャッジ日時 | 2025-04-16 15:37:57 |
| 合計ジャッジ時間 | 7,825 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | TLE * 1 -- * 26 |
ソースコード
MOD = 10**9 + 7
MOD_MINUS_1 = MOD - 1
def main():
import sys
input = sys.stdin.read
data = input().split()
A = int(data[0])
B = int(data[1])
N = int(data[2])
max_num = B
if max_num == 0:
print(0)
return
# Compute Möbius function
mu = [1] * (max_num + 1)
is_prime = [True] * (max_num + 1)
for p in range(2, max_num + 1):
if is_prime[p]:
for multiple in range(p, max_num + 1, p):
is_prime[multiple] = False if multiple != p else is_prime[multiple]
mu[multiple] *= -1
p_square = p * p
for multiple in range(p_square, max_num + 1, p_square):
mu[multiple] = 0
# Precompute cnt[x] for all x
cnt = [0] * (max_num + 1)
for x in range(1, max_num + 1):
cnt[x] = (B // x) - ((A - 1) // x)
# Precompute term[x] = pow(cnt[x], N, MOD_MINUS_1)
term = [0] * (max_num + 1)
for x in range(1, max_num + 1):
c = cnt[x]
if c <= 0:
term[x] = 0
else:
term[x] = pow(c, N, MOD_MINUS_1)
# Precompute S[k] = sum_{m=1 to M} term[k*m], where M = B // k
S = [0] * (max_num + 1)
for k in range(1, max_num + 1):
if k > B:
S[k] = 0
continue
M = B // k
if M == 0:
S[k] = 0
continue
total = 0
for m in range(1, M + 1):
x = k * m
total += term[x]
if total >= MOD_MINUS_1:
total -= MOD_MINUS_1
S[k] = total % MOD_MINUS_1
# Compute the result
result = 1
for k in range(1, max_num + 1):
if mu[k] == 0:
continue
exponent = (-mu[k] * S[k]) % MOD_MINUS_1
result = (result * pow(k, exponent, MOD)) % MOD
print(result)
if __name__ == '__main__':
main()
lam6er