結果
| 問題 |
No.2122 黄金比で擬似乱数生成
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 15:48:11 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,094 bytes |
| コンパイル時間 | 445 ms |
| コンパイル使用メモリ | 81,584 KB |
| 実行使用メモリ | 222,344 KB |
| 最終ジャッジ日時 | 2025-04-16 15:49:05 |
| 合計ジャッジ時間 | 5,779 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 16 TLE * 1 -- * 9 |
ソースコード
def main():
import sys
S = sys.stdin.readline().strip()
M = int(sys.stdin.readline())
L = int(sys.stdin.readline())
initial_n = int(S)
# Precompute f(n) for all n in 0..9999
f = [0] * 10000
if M == 0:
# For M=0, the result is always 0
for n in range(10000):
f[n] = 0
else:
for n in range(10000):
# Compute b_M for this n
if M == 1:
b = 1
else:
# Matrix exponentiation for the recurrence b_m = n*b_{m-1} + b_{m-2}
def multiply(a, b):
return [
[a[0][0]*b[0][0] + a[0][1]*b[1][0], a[0][0]*b[0][1] + a[0][1]*b[1][1]],
[a[1][0]*b[0][0] + a[1][1]*b[1][0], a[1][0]*b[0][1] + a[1][1]*b[1][1]]
]
def matrix_power(mat, power):
result = [[1, 0], [0, 1]] # Identity matrix
while power > 0:
if power % 2 == 1:
result = multiply(result, mat)
mat = multiply(mat, mat)
power //= 2
return result
mat = [[n, 1], [1, 0]]
power = M - 1
mat_pow = matrix_power(mat, power)
# Initial vector is [b_1, b_0] = [1, 0]
b = mat_pow[0][0] * 1 + mat_pow[0][1] * 0
if M % 2 == 0:
new_n = b
else:
new_n = b - 1
new_n %= 10000
f[n] = new_n
# Precompute binary lifting table
jump = [[0] * 10000 for _ in range(60)]
for n in range(10000):
jump[0][n] = f[n]
for k in range(1, 60):
for n in range(10000):
jump[k][n] = jump[k-1][jump[k-1][n]]
# Apply L steps using binary lifting
current = initial_n
for bit in range(60):
if L & (1 << bit):
current = jump[bit][current]
# Convert to 4-digit string
print(f"{current:04d}")
if __name__ == "__main__":
main()
lam6er