結果
問題 |
No.2674 k-Walk on Bipartite
|
ユーザー |
![]() |
提出日時 | 2025-04-16 15:53:08 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,625 bytes |
コンパイル時間 | 308 ms |
コンパイル使用メモリ | 82,348 KB |
実行使用メモリ | 144,660 KB |
最終ジャッジ日時 | 2025-04-16 15:54:04 |
合計ジャッジ時間 | 8,679 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 26 WA * 10 |
ソースコード
import sys from collections import deque def main(): n, m = map(int, sys.stdin.readline().split()) s, t, k = map(int, sys.stdin.readline().split()) edges = [[] for _ in range(n + 1)] original_edges = set() for _ in range(m): a, b = map(int, sys.stdin.readline().split()) edges[a].append(b) edges[b].append(a) if a > b: a, b = b, a original_edges.add((a, b)) # Step 1: Determine bipartite colors color = [-1] * (n + 1) color[s] = 0 q = deque([s]) while q: u = q.popleft() for v in edges[u]: if color[v] == -1: color[v] = 1 - color[u] q.append(v) # Check parity condition if (color[s] == color[t]) != (k % 2 == 0): print("No") return # Step 2: BFS to find shortest path and connected component visited = [False] * (n + 1) prev = [-1] * (n + 1) distance = {s: 0} visited[s] = True q = deque([s]) cc = set() cc.add(s) while q: u = q.popleft() for v in edges[u]: if not visited[v]: visited[v] = True distance[v] = distance[u] + 1 prev[v] = u q.append(v) cc.add(v) if t not in cc: # Not connected in F, check complete bipartite if color[s] == color[t]: if k >= 2 and k % 2 == 0: print("Unknown") else: print("No") else: if k >= 1 and k % 2 == 1: print("Unknown") else: print("No") return d = distance[t] if d > k: # Check complete bipartite if color[s] == color[t]: if k >= 2 and k % 2 == 0: print("Unknown") else: print("No") else: if k >= 1 and k % 2 == 1: print("Unknown") else: print("No") return if d == k: print("Yes") return # Check if the connected component has a cycle V = len(cc) E = 0 for a, b in original_edges: if a in cc and b in cc: E += 1 if E >= V: print("Yes") return # Tree case: check (k - d) even and path has a node with degree >= 2 if (k - d) % 2 != 0: # Check complete bipartite if color[s] == color[t]: if k >= 2 and k % 2 == 0: print("Unknown") else: print("No") else: if k >= 1 and k % 2 == 1: print("Unknown") else: print("No") return # Reconstruct path path = [] current = t while current != s: path.append(current) current = prev[current] path.append(s) path.reverse() # Compute degrees degree = [0] * (n + 1) for a, b in original_edges: if a in cc and b in cc: degree[a] += 1 degree[b] += 1 # Check if any node in path has degree >= 2 found = False for u in path: if degree[u] >= 2: found = True break if found: print("Yes") return # Check complete bipartite if color[s] == color[t]: if k >= 2 and k % 2 == 0: print("Unknown") else: print("No") else: if k >= 1 and k % 2 == 1: print("Unknown") else: print("No") if __name__ == "__main__": main()