結果
| 問題 |
No.2674 k-Walk on Bipartite
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 15:53:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,625 bytes |
| コンパイル時間 | 308 ms |
| コンパイル使用メモリ | 82,348 KB |
| 実行使用メモリ | 144,660 KB |
| 最終ジャッジ日時 | 2025-04-16 15:54:04 |
| 合計ジャッジ時間 | 8,679 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 WA * 10 |
ソースコード
import sys
from collections import deque
def main():
n, m = map(int, sys.stdin.readline().split())
s, t, k = map(int, sys.stdin.readline().split())
edges = [[] for _ in range(n + 1)]
original_edges = set()
for _ in range(m):
a, b = map(int, sys.stdin.readline().split())
edges[a].append(b)
edges[b].append(a)
if a > b:
a, b = b, a
original_edges.add((a, b))
# Step 1: Determine bipartite colors
color = [-1] * (n + 1)
color[s] = 0
q = deque([s])
while q:
u = q.popleft()
for v in edges[u]:
if color[v] == -1:
color[v] = 1 - color[u]
q.append(v)
# Check parity condition
if (color[s] == color[t]) != (k % 2 == 0):
print("No")
return
# Step 2: BFS to find shortest path and connected component
visited = [False] * (n + 1)
prev = [-1] * (n + 1)
distance = {s: 0}
visited[s] = True
q = deque([s])
cc = set()
cc.add(s)
while q:
u = q.popleft()
for v in edges[u]:
if not visited[v]:
visited[v] = True
distance[v] = distance[u] + 1
prev[v] = u
q.append(v)
cc.add(v)
if t not in cc:
# Not connected in F, check complete bipartite
if color[s] == color[t]:
if k >= 2 and k % 2 == 0:
print("Unknown")
else:
print("No")
else:
if k >= 1 and k % 2 == 1:
print("Unknown")
else:
print("No")
return
d = distance[t]
if d > k:
# Check complete bipartite
if color[s] == color[t]:
if k >= 2 and k % 2 == 0:
print("Unknown")
else:
print("No")
else:
if k >= 1 and k % 2 == 1:
print("Unknown")
else:
print("No")
return
if d == k:
print("Yes")
return
# Check if the connected component has a cycle
V = len(cc)
E = 0
for a, b in original_edges:
if a in cc and b in cc:
E += 1
if E >= V:
print("Yes")
return
# Tree case: check (k - d) even and path has a node with degree >= 2
if (k - d) % 2 != 0:
# Check complete bipartite
if color[s] == color[t]:
if k >= 2 and k % 2 == 0:
print("Unknown")
else:
print("No")
else:
if k >= 1 and k % 2 == 1:
print("Unknown")
else:
print("No")
return
# Reconstruct path
path = []
current = t
while current != s:
path.append(current)
current = prev[current]
path.append(s)
path.reverse()
# Compute degrees
degree = [0] * (n + 1)
for a, b in original_edges:
if a in cc and b in cc:
degree[a] += 1
degree[b] += 1
# Check if any node in path has degree >= 2
found = False
for u in path:
if degree[u] >= 2:
found = True
break
if found:
print("Yes")
return
# Check complete bipartite
if color[s] == color[t]:
if k >= 2 and k % 2 == 0:
print("Unknown")
else:
print("No")
else:
if k >= 1 and k % 2 == 1:
print("Unknown")
else:
print("No")
if __name__ == "__main__":
main()
lam6er