結果
| 問題 |
No.2313 Product of Subsequence (hard)
|
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:28:57 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,784 bytes |
| コンパイル時間 | 291 ms |
| コンパイル使用メモリ | 82,072 KB |
| 実行使用メモリ | 268,808 KB |
| 最終ジャッジ日時 | 2025-04-16 16:29:51 |
| 合計ジャッジ時間 | 14,256 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 10 TLE * 1 -- * 16 |
ソースコード
import sys
from collections import defaultdict
MOD = 998244353
def factorize(k):
factors = {}
i = 2
while i * i <= k:
while k % i == 0:
factors[i] = factors.get(i, 0) + 1
k = k // i
i += 1
if k > 1:
factors[k] = 1
return factors
def main():
n, k = map(int, sys.stdin.readline().split())
a = list(map(int, sys.stdin.readline().split()))
if k == 1:
print((pow(2, n, MOD) - 1) % MOD)
return
factors = factorize(k)
primes = list(factors.keys())
m = len(primes)
if m == 0:
print((pow(2, n, MOD) - 1) % MOD)
return
G = []
C = []
for x in a:
ex = {}
has = False
for p in primes:
e = 0
tmp = x
while tmp % p == 0 and tmp != 0:
e += 1
tmp = tmp // p
ex[p] = e
if e > 0:
has = True
if has:
G.append(ex)
else:
C.append(x)
lenG = len(G)
total_G_subsets = (pow(2, lenG, MOD) - 1) % MOD
forbidden = 0
for mask in range(1, 1 << m):
bits = bin(mask).count('1')
T = [primes[i] for i in range(m) if (mask & (1 << i))]
required = [factors[p] for p in T]
G_T = []
for ex in G:
valid = True
for i, p in enumerate(T):
if ex[p] >= required[i]:
valid = False
break
if valid:
G_T.append(ex)
exponents_list = []
for ex in G_T:
el = [ex[p] for p in T]
exponents_list.append(el)
dp = defaultdict(int)
initial_state = tuple([0] * len(T))
dp[initial_state] = 1
for el in exponents_list:
new_dp = defaultdict(int)
for state in dp:
new_dp[state] = (new_dp[state] + dp[state]) % MOD
new_state = list(state)
valid = True
for i in range(len(new_state)):
new_state[i] += el[i]
if new_state[i] >= required[i]:
valid = False
break
if valid:
new_state = tuple(new_state)
new_dp[new_state] = (new_dp[new_state] + dp[state]) % MOD
dp = new_dp
count = (sum(dp.values()) - 1) % MOD
sign = (-1) ** (bits + 1)
forbidden = (forbidden + sign * count) % MOD
valid_G_subsets = (total_G_subsets - forbidden) % MOD
powC = pow(2, len(C), MOD)
answer = (valid_G_subsets * powC) % MOD
print(answer)
if __name__ == "__main__":
main()
lam6er