結果
| 問題 |
No.848 なかよし旅行
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:29:21 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 1,513 bytes |
| コンパイル時間 | 516 ms |
| コンパイル使用メモリ | 81,664 KB |
| 実行使用メモリ | 103,164 KB |
| 最終ジャッジ日時 | 2025-04-16 16:30:49 |
| 合計ジャッジ時間 | 6,442 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 7 WA * 19 |
ソースコード
import heapq
def dijkstra(n, graph, start):
INF = float('inf')
dist = [INF] * (n + 1)
dist[start] = 0
heap = []
heapq.heappush(heap, (0, start))
while heap:
current_dist, u = heapq.heappop(heap)
if current_dist > dist[u]:
continue
for v, c in graph[u]:
if dist[v] > dist[u] + c:
dist[v] = dist[u] + c
heapq.heappush(heap, (dist[v], v))
return dist
n, m, P, Q, T = map(int, input().split())
graph = [[] for _ in range(n+1)]
for _ in range(m):
a, b, c = map(int, input().split())
graph[a].append((b, c))
graph[b].append((a, c))
# Compute shortest paths from 1, P, Q
d1 = dijkstra(n, graph, 1)
dp = dijkstra(n, graph, P)
dq = dijkstra(n, graph, Q)
max_time = -1
# Check Scenario A: 1->P->Q->1 and 1->Q->P->1
time1 = d1[P] + dp[Q] + dq[1]
if time1 <= T:
max_time = max(max_time, T)
time2 = d1[Q] + dq[P] + dp[1]
if time2 <= T:
max_time = max(max_time, T)
# Check Scenario B: Split at some city X
for X in range(1, n+1):
max_pq = max(2 * dp[X], 2 * dq[X])
total_time = 2 * d1[X] + max_pq
if total_time <= T:
candidate = T - max_pq
if candidate > max_time:
max_time = candidate
# Check Scenario D: Separate visits to P and Q
time_p = 2 * d1[P]
time_q = 2 * d1[Q]
max_pq_separate = max(time_p, time_q)
if max_pq_separate <= T:
candidate = T - max_pq_separate
max_time = max(max_time, candidate)
print(max_time if max_time != -1 else -1)
lam6er