結果
| 問題 |
No.2959 Dolls' Tea Party
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:34:02 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,611 bytes |
| コンパイル時間 | 632 ms |
| コンパイル使用メモリ | 82,192 KB |
| 実行使用メモリ | 157,792 KB |
| 最終ジャッジ日時 | 2025-04-16 16:37:44 |
| 合計ジャッジ時間 | 7,246 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 5 TLE * 1 -- * 27 |
ソースコード
import sys
MOD = 998244353
def main():
sys.setrecursionlimit(1 << 25)
N, K = map(int, sys.stdin.readline().split())
A = list(map(int, sys.stdin.readline().split()))
# Precompute factorial and inverse factorial up to 1300
max_m = K
fact = [1] * (max_m + 1)
for i in range(1, max_m + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_m + 1)
inv_fact[max_m] = pow(fact[max_m], MOD-2, MOD)
for i in range(max_m-1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
# Precompute phi for all numbers up to K
max_phi = K
phi = list(range(max_phi + 1))
for p in range(2, max_phi + 1):
if phi[p] == p:
for multiple in range(p, max_phi + 1, p):
phi[multiple] = phi[multiple] // p * (p - 1)
# Function to get all divisors of K
def get_divisors(n):
divisors = set()
for i in range(1, int(n**0.5) + 1):
if n % i == 0:
divisors.add(i)
divisors.add(n // i)
return sorted(divisors)
divisors = get_divisors(K)
total = 0
for d in divisors:
m = K // d
if m == 0:
continue
B = [a // d for a in A]
k = 0
S = []
for i in range(N):
if B[i] >= m:
k += 1
else:
S.append(B[i])
# Compute e^{kx} mod x^{m+1}
e_kx = [0] * (m + 1)
for c in range(m + 1):
e_kx[c] = pow(k, c, MOD) * inv_fact[c] % MOD
# Compute product of polynomials for S
dp = [0] * (m + 1)
dp[0] = 1
for b in S:
max_c = min(b, m)
poly = [inv_fact[c] for c in range(max_c + 1)]
new_dp = [0] * (m + 1)
for i in range(m + 1):
if dp[i] == 0:
continue
for c in range(0, max_c + 1):
if i + c > m:
break
new_dp[i + c] = (new_dp[i + c] + dp[i] * poly[c]) % MOD
dp = new_dp
# Multiply by e_kx
final = [0] * (m + 1)
for i in range(m + 1):
if dp[i] == 0:
continue
for j in range(m + 1 - i):
final[i + j] = (final[i + j] + dp[i] * e_kx[j]) % MOD
coeff = final[m]
ways = coeff * fact[m] % MOD
total = (total + ways * phi[d]) % MOD
inv_K = pow(K, MOD-2, MOD)
ans = total * inv_K % MOD
print(ans)
if __name__ == '__main__':
main()
lam6er