結果
問題 |
No.856 増える演算
|
ユーザー |
![]() |
提出日時 | 2025-04-16 16:41:14 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,477 bytes |
コンパイル時間 | 352 ms |
コンパイル使用メモリ | 81,984 KB |
実行使用メモリ | 88,096 KB |
最終ジャッジ日時 | 2025-04-16 16:42:41 |
合計ジャッジ時間 | 35,102 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 40 WA * 9 TLE * 2 -- * 29 |
ソースコード
MOD = 10**9 + 7 def main(): import sys input = sys.stdin.read data = input().split() n = int(data[0]) A = list(map(int, data[1:n+1])) # Find the minimum value of (a + b) * (a ** b) min_val = None # Check all pairs where a is the minimum element min_a = min(A) indices = [i for i, x in enumerate(A) if x == min_a] # Check pairs among the minimum elements if len(indices) >= 2: a = min_a b = min_a current = (a + b) * pow(a, b, MOD) if min_val is None or current < min_val: min_val = current # Check pairs of min_a with other elements for i in indices: for j in range(n): if j == i: continue if i < j: a, b = A[i], A[j] else: a, b = A[j], A[i] if j < i: continue # Ensure i < j current = (a + b) * pow(a, b, MOD) if min_val is None or current < min_val: min_val = current # Also check the first few elements for possible minimum for i in range(min(n, 100)): for j in range(i+1, min(n, i+100)): a, b = A[i], A[j] current = (a + b) * pow(a, b, MOD) if min_val is None or current < min_val: min_val = current # Compute sum_j for each i (sum of A[j] where j > i) sum_j = [0] * n current_sum = 0 for i in reversed(range(n)): sum_j[i] = current_sum current_sum += A[i] # Compute Q = product of A_i^sum_j[i] mod MOD Q = 1 for i in range(n): a = A[i] exponent = sum_j[i] if a == 0: Q = 0 break if exponent == 0: continue a_mod = a % MOD exp_mod = exponent % (MOD-1) Q = (Q * pow(a_mod, exp_mod, MOD)) % MOD # Compute P = product of (A_i + A_j) for all i < j mod MOD P = 1 for j in range(n): for i in range(j): term = (A[i] + A[j]) % MOD P = (P * term) % MOD # Compute total = (P * Q) // min_val mod MOD # But need to handle division in modular arithmetic total = (P * Q) % MOD min_val_mod = min_val % MOD if min_val_mod == 0: print(0) return # Find the modular inverse of min_val_mod inv = pow(min_val_mod, MOD-2, MOD) result = (total * inv) % MOD print(result) if __name__ == '__main__': main()