結果
| 問題 |
No.856 増える演算
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:41:14 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,477 bytes |
| コンパイル時間 | 352 ms |
| コンパイル使用メモリ | 81,984 KB |
| 実行使用メモリ | 88,096 KB |
| 最終ジャッジ日時 | 2025-04-16 16:42:41 |
| 合計ジャッジ時間 | 35,102 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 40 WA * 9 TLE * 2 -- * 29 |
ソースコード
MOD = 10**9 + 7
def main():
import sys
input = sys.stdin.read
data = input().split()
n = int(data[0])
A = list(map(int, data[1:n+1]))
# Find the minimum value of (a + b) * (a ** b)
min_val = None
# Check all pairs where a is the minimum element
min_a = min(A)
indices = [i for i, x in enumerate(A) if x == min_a]
# Check pairs among the minimum elements
if len(indices) >= 2:
a = min_a
b = min_a
current = (a + b) * pow(a, b, MOD)
if min_val is None or current < min_val:
min_val = current
# Check pairs of min_a with other elements
for i in indices:
for j in range(n):
if j == i:
continue
if i < j:
a, b = A[i], A[j]
else:
a, b = A[j], A[i]
if j < i:
continue # Ensure i < j
current = (a + b) * pow(a, b, MOD)
if min_val is None or current < min_val:
min_val = current
# Also check the first few elements for possible minimum
for i in range(min(n, 100)):
for j in range(i+1, min(n, i+100)):
a, b = A[i], A[j]
current = (a + b) * pow(a, b, MOD)
if min_val is None or current < min_val:
min_val = current
# Compute sum_j for each i (sum of A[j] where j > i)
sum_j = [0] * n
current_sum = 0
for i in reversed(range(n)):
sum_j[i] = current_sum
current_sum += A[i]
# Compute Q = product of A_i^sum_j[i] mod MOD
Q = 1
for i in range(n):
a = A[i]
exponent = sum_j[i]
if a == 0:
Q = 0
break
if exponent == 0:
continue
a_mod = a % MOD
exp_mod = exponent % (MOD-1)
Q = (Q * pow(a_mod, exp_mod, MOD)) % MOD
# Compute P = product of (A_i + A_j) for all i < j mod MOD
P = 1
for j in range(n):
for i in range(j):
term = (A[i] + A[j]) % MOD
P = (P * term) % MOD
# Compute total = (P * Q) // min_val mod MOD
# But need to handle division in modular arithmetic
total = (P * Q) % MOD
min_val_mod = min_val % MOD
if min_val_mod == 0:
print(0)
return
# Find the modular inverse of min_val_mod
inv = pow(min_val_mod, MOD-2, MOD)
result = (total * inv) % MOD
print(result)
if __name__ == '__main__':
main()
lam6er