結果
| 問題 |
No.924 紲星
|
| コンテスト | |
| ユーザー |
lam6er
|
| 提出日時 | 2025-04-16 16:52:51 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,734 bytes |
| コンパイル時間 | 421 ms |
| コンパイル使用メモリ | 81,404 KB |
| 実行使用メモリ | 77,184 KB |
| 最終ジャッジ日時 | 2025-04-16 16:53:01 |
| 合計ジャッジ時間 | 7,557 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 5 TLE * 1 -- * 10 |
ソースコード
import bisect
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
Q = int(input[ptr])
ptr += 1
A = list(map(int, input[ptr:ptr+N]))
ptr += N
# Precompute prefix sum
prefix = [0] * (N + 1)
for i in range(N):
prefix[i+1] = prefix[i] + A[i]
# Build the Merge Sort Tree
class Node:
__slots__ = ['sorted_list', 'prefix_sum', 'left', 'right']
def __init__(self, sorted_list, prefix_sum):
self.sorted_list = sorted_list
self.prefix_sum = prefix_sum
self.left = None
self.right = None
def build(l, r):
if l == r:
sl = [A[l]]
ps = [A[l]]
return Node(sl, ps)
mid = (l + r) // 2
left_node = build(l, mid)
right_node = build(mid + 1, r)
# Merge the two sorted lists
merged = []
i = j = 0
while i < len(left_node.sorted_list) and j < len(right_node.sorted_list):
if left_node.sorted_list[i] <= right_node.sorted_list[j]:
merged.append(left_node.sorted_list[i])
i += 1
else:
merged.append(right_node.sorted_list[j])
j += 1
merged.extend(left_node.sorted_list[i:])
merged.extend(right_node.sorted_list[j:])
# Compute prefix sum
ps = []
s = 0
for num in merged:
s += num
ps.append(s)
node = Node(merged, ps)
node.left = left_node
node.right = right_node
return node
root = build(0, N-1)
# Query function for count and sum of elements <= x in [l, r] (0-based)
def query_count_sum(l, r, x):
# Convert to 0-based
l -= 1
r -= 1
result_cnt = 0
result_sum = 0
stack = [(root, 0, N-1)]
while stack:
node, node_l, node_r = stack.pop()
if node_r < l or node_l > r:
continue
if l <= node_l and node_r <= r:
# Binary search in the sorted_list
cnt = bisect.bisect_right(node.sorted_list, x)
sum_val = node.prefix_sum[cnt-1] if cnt > 0 else 0
result_cnt += cnt
result_sum += sum_val
continue
mid = (node_l + node_r) // 2
if node.right:
stack.append((node.right, mid+1, node_r))
if node.left:
stack.append((node.left, node_l, mid))
return (result_cnt, result_sum)
# Precompute sorted unique elements for binary search
sorted_unique = sorted(set(A))
sorted_unique.sort()
# Process each query
output = []
for _ in range(Q):
L = int(input[ptr])
ptr += 1
R = int(input[ptr])
ptr += 1
sum_total = prefix[R] - prefix[L-1]
length = R - L + 1
k = (length + 1) // 2
# Binary search on sorted_unique to find the median
low = 0
high = len(sorted_unique) - 1
median = sorted_unique[-1]
while low <= high:
mid = (low + high) // 2
candidate = sorted_unique[mid]
cnt, _ = query_count_sum(L, R, candidate)
if cnt >= k:
median = candidate
high = mid - 1
else:
low = mid + 1
# Get the sum and count of elements <= median
cnt_low, sum_low = query_count_sum(L, R, median)
ans = (median * cnt_low - sum_low) + (sum_total - sum_low - median * (length - cnt_low))
output.append(str(ans))
print('\n'.join(output))
if __name__ == "__main__":
main()
lam6er