結果
| 問題 |
No.2739 Time is money
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-17 17:09:39 |
| 言語 | Ruby (3.4.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,992 bytes |
| コンパイル時間 | 356 ms |
| コンパイル使用メモリ | 7,968 KB |
| 実行使用メモリ | 106,404 KB |
| 最終ジャッジ日時 | 2025-04-17 17:09:55 |
| 合計ジャッジ時間 | 15,819 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 2 TLE * 4 -- * 12 |
コンパイルメッセージ
Syntax OK
ソースコード
# Priority Queue
# Reference: https://github.com/python/cpython/blob/main/Lib/heapq.py
class PriorityQueue
# By default, the priority queue returns the maximum element first.
# If a block is given, the priority between the elements is determined with it.
# For example, the following block is given, the priority queue returns the minimum element first.
# `PriorityQueue.new { |x, y| x < y }`
#
# A heap is an array for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for all k, counting elements from 0.
def initialize(array = [], &comp)
@heap = array
@comp = comp || proc { |x, y| x > y }
heapify
end
def self.max(array)
new(array)
end
def self.min(array)
new(array) { |x, y| x < y }
end
def self.[](*array, &comp)
new(array, &comp)
end
attr_reader :heap
alias to_a heap
# Push new element to the heap.
def push(item)
shift_down(0, @heap.push(item).size - 1)
self
end
alias << push
alias append push
# Pop the element with the highest priority.
def pop
latest = @heap.pop
return latest if empty?
ret_item = heap[0]
heap[0] = latest
shift_up(0)
ret_item
end
# Get the element with the highest priority.
def get
@heap[0]
end
alias top get
alias first get
# Returns true if the heap is empty.
def empty?
@heap.empty?
end
def size
@heap.size
end
def to_s
"<#{self.class}: @heap:(#{heap.join(', ')}), @comp:<#{@comp.class} #{@comp.source_location.join(':')}>>"
end
private
def heapify
(@heap.size / 2 - 1).downto(0) { |i| shift_up(i) }
end
def shift_up(pos)
end_pos = @heap.size
start_pos = pos
new_item = @heap[pos]
left_child_pos = 2 * pos + 1
while left_child_pos < end_pos
right_child_pos = left_child_pos + 1
if right_child_pos < end_pos && @comp.call(@heap[right_child_pos], @heap[left_child_pos])
left_child_pos = right_child_pos
end
# Move the higher priority child up.
@heap[pos] = @heap[left_child_pos]
pos = left_child_pos
left_child_pos = 2 * pos + 1
end
@heap[pos] = new_item
shift_down(start_pos, pos)
end
def shift_down(star_pos, pos)
new_item = @heap[pos]
while pos > star_pos
parent_pos = (pos - 1) >> 1
parent = @heap[parent_pos]
break if @comp.call(parent, new_item)
@heap[pos] = parent
pos = parent_pos
end
@heap[pos] = new_item
end
end
n, m, x = gets.split.map(&:to_i)
paths = m.times.map { gets.split.map(&:to_i) }
g = Array.new(n) { [] }
paths.each do |u, v, c, t|
t += Rational(c, x)
g[u - 1] << [v - 1, t]
g[v - 1] << [u - 1, t]
end
inf = 10**12
dist = Array.new(n, inf).tap { _1[0] = 0 }
que = PriorityQueue.new { _1[0] < _2[0] }
que << [0, 0]
until que.empty?
cost, now = que.pop
g[now].each do |nxt, c|
cnx = cost + c
next if dist[nxt] <= cnx
dist[nxt] = cnx
que.push [cnx, nxt]
end
end
puts dist[-1] == inf ? -1 : dist[-1].ceil