結果
| 問題 |
No.2860 Heal Slimes
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-18 16:08:01 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,026 bytes |
| コンパイル時間 | 2,088 ms |
| コンパイル使用メモリ | 195,812 KB |
| 実行使用メモリ | 9,472 KB |
| 最終ジャッジ日時 | 2025-04-18 16:08:07 |
| 合計ジャッジ時間 | 5,337 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 39 WA * 21 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
// o4-mini-high
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T; cin >> T;
while(T--){
int N, K;
ll X;
cin >> N >> K >> X;
vector<ll> H(N);
for (int i = 0; i < N; i++) {
cin >> H[i];
}
// If K == N, we can only add to all N slimes at once:
// differences remain the same, so only possible if all H are already equal.
if (K == N) {
bool all_eq = true;
for (int i = 1; i < N; i++) {
if (H[i] != H[0]) {
all_eq = false;
break;
}
}
cout << (all_eq ? "Yes\n" : "No\n");
return 0;
}
// Check the modulo invariant: all H[i] % X must be the same.
ll r = H[0] % X;
for (int i = 1; i < N; i++) {
if (H[i] % X != r) {
cout << "No\n";
return 0;
}
}
// Build a[i] = (H[i] - r) / X, so H[i] = X * a[i] + r.
vector<ll> a(N+1);
for (int i = 1; i <= N; i++) {
a[i] = (H[i-1] - r) / X;
}
// Build the "delta" array d[i] = a[i] - a[i-1] for i=2..N, and d[N+1] = -a[N].
vector<ll> d(N+2);
for (int i = 2; i <= N; i++) {
d[i] = a[i] - a[i-1];
}
d[N+1] = -a[N];
int M = N - K + 1; // number of possible operation start positions
// Compute base_op[j] for j=1..M, assuming the final target a_f = 0.
// Later we'll adjust by a global C = a_f (the target a-value).
vector<ll> base_op(M+1);
base_op[1] = -a[1];
for (int j = 2; j <= M; j++) {
if (j <= K) {
// op_j = -d[j]
base_op[j] = -d[j];
} else {
// op_j = -d[j] + op_{j-K}
base_op[j] = -d[j] + base_op[j - K];
}
}
// For starts j where (j-1)%K != 0, base_op[j] must be >= 0 (no C adjustment).
for (int j = 1; j <= M; j++) {
if ((j - 1) % K != 0) {
if (base_op[j] < 0) {
cout << "No\n";
return 0;
}
}
}
// Compute the minimum C needed to make op_j >= 0 for j ≡ 1 (mod K):
// op_j = base_op[j] + C >= 0 => C >= -base_op[j]
ll C_min = LLONG_MIN;
for (int j = 1; j <= M; j++) {
if ((j - 1) % K == 0) {
C_min = max(C_min, -base_op[j]);
}
}
// Tail consistency constraints:
// For i = M+1..N, let j = i-K (so j in [N-2K+2 .. N-K]),
// we need d[i] = op_j.
int j_low = max(1, N - 2 * K + 2);
int j_high = N - K;
bool C_assigned = false;
ll C_val = 0;
for (int j = j_low; j <= j_high; j++) {
int i = j + K; // the corresponding delta index
if ((j - 1) % K == 0) {
// op_j = base_op[j] + C must equal d[i]
ll neededC = d[i] - base_op[j];
if (!C_assigned) {
C_assigned = true;
C_val = neededC;
} else if (C_val != neededC) {
cout << "No\n";
return 0;
}
} else {
// op_j = base_op[j] must equal d[i]
if (base_op[j] != d[i]) {
cout << "No\n";
return 0;
}
}
}
// The final target a-value must be at least max(a[i]) so that final HP >= max(H).
ll q = 0;
for (int i = 1; i <= N; i++) {
q = max(q, a[i]);
}
if (C_assigned) {
// Check that the assigned C meets the lower bounds.
if (C_val < q || C_val < C_min) {
cout << "No\n";
} else {
cout << "Yes\n";
}
} else {
// No exact tail constraint on C, so we can choose C = max(q, C_min)
// which will satisfy all op_j >= 0.
ll C_pick = max(q, C_min);
// It's always possible in this branch.
cout << "Yes\n";
}
return 0;
}
}