結果
| 問題 |
No.3122 Median of Medians of Division
|
| コンテスト | |
| ユーザー |
沙耶花
|
| 提出日時 | 2025-04-18 23:35:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,695 bytes |
| コンパイル時間 | 5,426 ms |
| コンパイル使用メモリ | 279,372 KB |
| 実行使用メモリ | 427,504 KB |
| 最終ジャッジ日時 | 2025-04-18 23:35:36 |
| 合計ジャッジ時間 | 13,662 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 39 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:170:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
170 | rep(i,n)scanf("%d",&a[i]);
| ~~~~~^~~~~~~~~~~~
main.cpp:174:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
174 | scanf("%d %d %d",&ts[i],&ls[i],&rs[i]);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <stdio.h>
#include <atcoder/all>
#include <bits/stdc++.h>
using namespace std;
using namespace atcoder;
using mint = modint998244353;
#define rep(i,n) for (int i = 0; i < (n); ++i)
#define Inf32 1000000001
#define Inf64 4000000000000000001LL
template <class S, S (*op)(S, S), S (*e)()> struct compressed_segtree {
segtree<S,op,e> seg;
compressed_segtree() : compressed_segtree(vector<long long>(0)) {
}
compressed_segtree(vector<long long> tx, vector<S> v){
_tx = tx;
seg = segtree<S,op,e>(v);
}
compressed_segtree(vector<long long> tx){
_tx = tx;
seg = segtree<S,op,e>(tx.size());
}
int lower_ind(long long p){
return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p));
}
void set(long long p, S x) {
seg.set(lower_ind(p), x);
}
S get(long long p) {
int idx = lower_ind(p);
if(idx!=_tx.size()&&_tx[idx]==p)return seg.get(idx);
return e();
}
S prod(long long l,long long r) {
return seg.prod(lower_ind(l),lower_ind(r));
}
S all_prod() { return seg.all_prod(); }
vector<long long> _tx;
};
template <class S, S (*op)(S, S), S (*e)()> struct compressed_2d_segtree {
vector<compressed_segtree<S,op,e>> seg;
compressed_2d_segtree() : compressed_2d_segtree(vector<long long>(0)) {
}
/*
compressed_2d_segtree(vector<long long> tx, vector<S> v){
_tx = tx;
seg = segtree<S,op,e>(v);
}
*/
compressed_2d_segtree(vector<pair<long long,long long>> tp){
_tp = tp;
rep(i,tp.size()){
_tx.push_back(tp[i].first);
_ty.push_back(tp[i].second);
}
sort(_tx.begin(),_tx.end());
_tx.erase(unique(_tx.begin(),_tx.end()),_tx.end());
sort(_ty.begin(),_ty.end());
_ty.erase(unique(_ty.begin(),_ty.end()),_ty.end());
int n = _tx.size();
log = 0;
while((1LL<<log) < n){
log++;
}
size = 1<<log;
seg.resize(size*2);
vector<vector<long long>> ys(size*2);
rep(i,tp.size()){
ys[size + lower_indx(tp[i].first)].push_back(tp[i].second);
}
for(int i=size;i<size*2;i++){
sort(ys[i].begin(),ys[i].end());
ys[i].erase(unique(ys[i].begin(),ys[i].end()),ys[i].end());
seg[i] = compressed_segtree<S,op,e>(ys[i]);
}
for(int i=size-1;i>=1;i--){
vector<long long> a(ys[i*2].rbegin(),ys[i*2].rend()), b(ys[i*2+1].rbegin(),ys[i*2+1].rend());
while(a.size()>0||b.size()>0){
if(a.size()==0){
swap(a,b);
}
else if(b.size()>0){
if(a.back()>b.back())swap(a,b);
}
if(ys[i].size()==0||ys[i].back()!=a.back())ys[i].push_back(a.back());
a.pop_back();
}
seg[i] = compressed_segtree<S,op,e>(ys[i]);
ys[i*2].clear();
ys[i*2+1].clear();
}
}
int lower_indx(long long p){
return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p));
}
int lower_indy(long long p){
return distance(_ty.begin(),lower_bound(_ty.begin(),_ty.end(),p));
}
void set(long long px, long long py, S x) {
px = lower_indx(px) + size;
seg[px].set(py,x);
for (int i = 1; i <= log; i++) update(px >> i, py);
}
S get(long long px, long long py) {
int idx = lower_indx(px);
if(idx!=_tx.size()&&_tx[idx]==px)return seg[idx+size].get(py);
return e();
}
S prod(long long lx,long long rx, long long ly, long long ry) {
S sml = e(), smr = e();
lx = lower_indx(lx)+size;
rx = lower_indx(rx)+size;
while (lx < rx) {
if (lx & 1) sml = op(sml, seg[lx++].prod(ly,ry));
if (rx & 1) smr = op(seg[--rx].prod(ly,ry), smr);
lx >>= 1;
rx >>= 1;
}
return op(sml, smr);
}
S all_prod() { return seg[1].all_prod(); }
int size, log;
vector<pair<long long,long long>> _tp;
vector<long long> _tx,_ty;
void update(int k, long long py) {
seg[k].set(py, op(seg[2*k].get(py), seg[2*k+1].get(py)));
}
};
int op(int a,int b){
return a+b;
}
int e(){
return 0;
}
int main(){
int n,q;
cin>>n>>q;
vector<int> a(n);
rep(i,n)scanf("%d",&a[i]);
vector<int> ts(q),ls(q),rs(q);
vector<int> vs = a;
rep(i,q){
scanf("%d %d %d",&ts[i],&ls[i],&rs[i]);
ls[i]--;
if(ts[i]==1)vs.push_back(rs[i]);
}
sort(vs.begin(),vs.end());
vs.erase(unique(vs.begin(),vs.end()),vs.end());
vector<pair<long long,long long>> tp;
rep(i,n){
a[i] = lower_bound(vs.begin(),vs.end(),a[i])-vs.begin();
tp.emplace_back(i,a[i]);
}
rep(i,q){
if(ts[i]==1){
rs[i] = lower_bound(vs.begin(),vs.end(),rs[i])-vs.begin();
tp.emplace_back(ls[i],rs[i]);
}
}
sort(tp.begin(),tp.end());
tp.erase(unique(tp.begin(),tp.end()),tp.end());
compressed_2d_segtree<int,op,e> seg(tp);
rep(i,n){
seg.set(i,a[i],1);
}
auto ta = a;
tp.clear();
rep(i,n-1){
tp.emplace_back(i,max(a[i],a[i+1]));
}
rep(i,q){
if(ts[i]==1){
a[ls[i]] = rs[i];
if(ls[i]!=0){
tp.emplace_back(ls[i]-1,max(a[ls[i]-1],a[ls[i]]));
}
if(ls[i]!=n-1){
tp.emplace_back(ls[i],max(a[ls[i]],a[ls[i]+1]));
}
}
}
sort(tp.begin(),tp.end());
tp.erase(unique(tp.begin(),tp.end()),tp.end());
compressed_2d_segtree<int,op,e> seg2(tp);
a = ta;
rep(i,n-1){
seg2.set(i,max(a[i],a[i+1]),1);
}
rep(_,q){
int t = ts[_];
int l = ls[_],r = rs[_];
if(t==1){
int ii = ls[_];
seg.set(ii,a[ii],0);
if(ii!=0){
seg2.set(ii-1,max(a[ii],a[ii-1]),0);
}
if(ii!=n-1){
seg2.set(ii,max(a[ii],a[ii+1]),0);
}
a[ii] = r;
seg.set(ii,a[ii],1);
if(ii!=0){
seg2.set(ii-1,max(a[ii],a[ii-1]),1);
}
if(ii!=n-1){
seg2.set(ii,max(a[ii],a[ii+1]),1);
}
}
else{
int ok = 0,ng = vs.size();
while(ng-ok>1){
int mid = (ok+ng)/2;
int x = seg.prod(l,r,0,mid);
int y = seg2.prod(l,r-1,0,mid);
if(r-l + y > 2*x)ok = mid;
else ng= mid;
}
printf("%d\n",vs[ok]);
}
}
return 0;
}
沙耶花