結果

問題 No.3122 Median of Medians of Division
ユーザー 沙耶花
提出日時 2025-04-18 23:35:22
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 5,695 bytes
コンパイル時間 5,426 ms
コンパイル使用メモリ 279,372 KB
実行使用メモリ 427,504 KB
最終ジャッジ日時 2025-04-18 23:35:36
合計ジャッジ時間 13,662 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample -- * 1
other TLE * 1 -- * 39
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:170:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  170 |         rep(i,n)scanf("%d",&a[i]);
      |                 ~~~~~^~~~~~~~~~~~
main.cpp:174:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  174 |                 scanf("%d %d %d",&ts[i],&ls[i],&rs[i]);
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #

#include <stdio.h>
#include <atcoder/all>
#include <bits/stdc++.h>
using namespace std;
using namespace atcoder;
using mint = modint998244353;
#define rep(i,n) for (int i = 0; i < (n); ++i)
#define Inf32 1000000001
#define Inf64 4000000000000000001LL

template <class S, S (*op)(S, S), S (*e)()> struct compressed_segtree {
	
	segtree<S,op,e> seg;
	
	compressed_segtree() : compressed_segtree(vector<long long>(0)) {
	}
	compressed_segtree(vector<long long> tx, vector<S> v){
		_tx = tx;
		seg = segtree<S,op,e>(v);
	}
	compressed_segtree(vector<long long> tx){
		_tx = tx;
		seg = segtree<S,op,e>(tx.size());
	}
	
	int lower_ind(long long p){
		return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p));
	}
	
	void set(long long p, S x) {
		seg.set(lower_ind(p), x);
    }
	
	S get(long long p) {
		int idx = lower_ind(p);
		if(idx!=_tx.size()&&_tx[idx]==p)return seg.get(idx);
		return e();
    }
	
	S prod(long long l,long long r) {
       return seg.prod(lower_ind(l),lower_ind(r));
    }

	S all_prod() { return seg.all_prod(); }
	
	vector<long long> _tx;
	
};

template <class S, S (*op)(S, S), S (*e)()> struct compressed_2d_segtree {
	
	vector<compressed_segtree<S,op,e>> seg;
	
	compressed_2d_segtree() : compressed_2d_segtree(vector<long long>(0)) {
	}
	/*
	compressed_2d_segtree(vector<long long> tx, vector<S> v){
		_tx = tx;
		seg = segtree<S,op,e>(v);
	}
	*/
	compressed_2d_segtree(vector<pair<long long,long long>> tp){
		_tp = tp;
		rep(i,tp.size()){
			_tx.push_back(tp[i].first);
			_ty.push_back(tp[i].second);
		}
		sort(_tx.begin(),_tx.end());
		_tx.erase(unique(_tx.begin(),_tx.end()),_tx.end());
		sort(_ty.begin(),_ty.end());
		_ty.erase(unique(_ty.begin(),_ty.end()),_ty.end());
		int n = _tx.size();
		log = 0;
		while((1LL<<log) < n){
			log++;
		}
		
		size = 1<<log;
		
		seg.resize(size*2);
		
		vector<vector<long long>> ys(size*2);
		rep(i,tp.size()){
			ys[size + lower_indx(tp[i].first)].push_back(tp[i].second);
		}
		for(int i=size;i<size*2;i++){
			sort(ys[i].begin(),ys[i].end());
			ys[i].erase(unique(ys[i].begin(),ys[i].end()),ys[i].end());
			seg[i] = compressed_segtree<S,op,e>(ys[i]);
		}
		
		for(int i=size-1;i>=1;i--){
			vector<long long> a(ys[i*2].rbegin(),ys[i*2].rend()), b(ys[i*2+1].rbegin(),ys[i*2+1].rend());
			while(a.size()>0||b.size()>0){
				if(a.size()==0){
					swap(a,b);
				}
				else if(b.size()>0){
					if(a.back()>b.back())swap(a,b);
				}
				if(ys[i].size()==0||ys[i].back()!=a.back())ys[i].push_back(a.back());
				a.pop_back();
			}
			
			seg[i] = compressed_segtree<S,op,e>(ys[i]);
			ys[i*2].clear();
			ys[i*2+1].clear();
		}

	}
	
	int lower_indx(long long p){
		return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p));
	}
	
	int lower_indy(long long p){
		return distance(_ty.begin(),lower_bound(_ty.begin(),_ty.end(),p));
	}
	
	void set(long long px, long long py, S x) {
		px = lower_indx(px) + size;
        seg[px].set(py,x);
        for (int i = 1; i <= log; i++) update(px >> i, py);
    }
	
	S get(long long px, long long py) {
		int idx = lower_indx(px);
		if(idx!=_tx.size()&&_tx[idx]==px)return seg[idx+size].get(py);
		return e();
    }
	
	S prod(long long lx,long long rx, long long ly, long long ry) {
		S sml = e(), smr = e();
        lx = lower_indx(lx)+size;
        rx = lower_indx(rx)+size;

        while (lx < rx) {
            if (lx & 1) sml = op(sml, seg[lx++].prod(ly,ry));
            if (rx & 1) smr = op(seg[--rx].prod(ly,ry), smr);
            lx >>= 1;
            rx >>= 1;
        }
        return op(sml, smr);
    }

	S all_prod() { return seg[1].all_prod(); }
	int size, log;
	vector<pair<long long,long long>> _tp;
	vector<long long> _tx,_ty;
	
	void update(int k, long long py) {
		seg[k].set(py, op(seg[2*k].get(py), seg[2*k+1].get(py)));
	}
};


int op(int a,int b){
	return a+b;
}

int e(){
	return 0;
}

int main(){
	
	int n,q;
	cin>>n>>q;
	vector<int> a(n);
	rep(i,n)scanf("%d",&a[i]);
	vector<int> ts(q),ls(q),rs(q);
	vector<int> vs = a;
	rep(i,q){
		scanf("%d %d %d",&ts[i],&ls[i],&rs[i]);
		ls[i]--;
		if(ts[i]==1)vs.push_back(rs[i]);
	}
	sort(vs.begin(),vs.end());
	vs.erase(unique(vs.begin(),vs.end()),vs.end());
	vector<pair<long long,long long>> tp;
	rep(i,n){
		a[i] = lower_bound(vs.begin(),vs.end(),a[i])-vs.begin();
		tp.emplace_back(i,a[i]);
	}
	rep(i,q){
		if(ts[i]==1){
			rs[i] = lower_bound(vs.begin(),vs.end(),rs[i])-vs.begin();
			tp.emplace_back(ls[i],rs[i]);
		}
	}
	sort(tp.begin(),tp.end());
	tp.erase(unique(tp.begin(),tp.end()),tp.end());
	compressed_2d_segtree<int,op,e> seg(tp);
	rep(i,n){
		seg.set(i,a[i],1);
	}
	auto ta = a;
	tp.clear();
	rep(i,n-1){
		tp.emplace_back(i,max(a[i],a[i+1]));
	}
	rep(i,q){
		if(ts[i]==1){
			a[ls[i]] = rs[i];
			if(ls[i]!=0){
				tp.emplace_back(ls[i]-1,max(a[ls[i]-1],a[ls[i]]));
			}
			if(ls[i]!=n-1){
				tp.emplace_back(ls[i],max(a[ls[i]],a[ls[i]+1]));
			}
		}
	}
	sort(tp.begin(),tp.end());
	tp.erase(unique(tp.begin(),tp.end()),tp.end());
	compressed_2d_segtree<int,op,e> seg2(tp);
	a = ta;
	rep(i,n-1){
		seg2.set(i,max(a[i],a[i+1]),1);
	}
	
	rep(_,q){
		int t = ts[_];
		int l = ls[_],r = rs[_];
		if(t==1){
			int ii = ls[_];
			seg.set(ii,a[ii],0);
			if(ii!=0){
				seg2.set(ii-1,max(a[ii],a[ii-1]),0);
			}
			if(ii!=n-1){
				seg2.set(ii,max(a[ii],a[ii+1]),0);
			}
			a[ii] = r;
			seg.set(ii,a[ii],1);
			if(ii!=0){
				seg2.set(ii-1,max(a[ii],a[ii-1]),1);
			}
			if(ii!=n-1){
				seg2.set(ii,max(a[ii],a[ii+1]),1);
			}
		}
		else{
			int ok = 0,ng = vs.size();
			while(ng-ok>1){
				int mid = (ok+ng)/2;
				int x = seg.prod(l,r,0,mid);
				int y = seg2.prod(l,r-1,0,mid);
				if(r-l + y > 2*x)ok = mid;
				else ng= mid;
			}
			printf("%d\n",vs[ok]);
		}
		
	}
	return 0;
}
0