結果
問題 |
No.3122 Median of Medians of Division
|
ユーザー |
![]() |
提出日時 | 2025-04-18 23:35:22 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,695 bytes |
コンパイル時間 | 5,426 ms |
コンパイル使用メモリ | 279,372 KB |
実行使用メモリ | 427,504 KB |
最終ジャッジ日時 | 2025-04-18 23:35:36 |
合計ジャッジ時間 | 13,662 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | TLE * 1 -- * 39 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:170:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 170 | rep(i,n)scanf("%d",&a[i]); | ~~~~~^~~~~~~~~~~~ main.cpp:174:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 174 | scanf("%d %d %d",&ts[i],&ls[i],&rs[i]); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <stdio.h> #include <atcoder/all> #include <bits/stdc++.h> using namespace std; using namespace atcoder; using mint = modint998244353; #define rep(i,n) for (int i = 0; i < (n); ++i) #define Inf32 1000000001 #define Inf64 4000000000000000001LL template <class S, S (*op)(S, S), S (*e)()> struct compressed_segtree { segtree<S,op,e> seg; compressed_segtree() : compressed_segtree(vector<long long>(0)) { } compressed_segtree(vector<long long> tx, vector<S> v){ _tx = tx; seg = segtree<S,op,e>(v); } compressed_segtree(vector<long long> tx){ _tx = tx; seg = segtree<S,op,e>(tx.size()); } int lower_ind(long long p){ return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p)); } void set(long long p, S x) { seg.set(lower_ind(p), x); } S get(long long p) { int idx = lower_ind(p); if(idx!=_tx.size()&&_tx[idx]==p)return seg.get(idx); return e(); } S prod(long long l,long long r) { return seg.prod(lower_ind(l),lower_ind(r)); } S all_prod() { return seg.all_prod(); } vector<long long> _tx; }; template <class S, S (*op)(S, S), S (*e)()> struct compressed_2d_segtree { vector<compressed_segtree<S,op,e>> seg; compressed_2d_segtree() : compressed_2d_segtree(vector<long long>(0)) { } /* compressed_2d_segtree(vector<long long> tx, vector<S> v){ _tx = tx; seg = segtree<S,op,e>(v); } */ compressed_2d_segtree(vector<pair<long long,long long>> tp){ _tp = tp; rep(i,tp.size()){ _tx.push_back(tp[i].first); _ty.push_back(tp[i].second); } sort(_tx.begin(),_tx.end()); _tx.erase(unique(_tx.begin(),_tx.end()),_tx.end()); sort(_ty.begin(),_ty.end()); _ty.erase(unique(_ty.begin(),_ty.end()),_ty.end()); int n = _tx.size(); log = 0; while((1LL<<log) < n){ log++; } size = 1<<log; seg.resize(size*2); vector<vector<long long>> ys(size*2); rep(i,tp.size()){ ys[size + lower_indx(tp[i].first)].push_back(tp[i].second); } for(int i=size;i<size*2;i++){ sort(ys[i].begin(),ys[i].end()); ys[i].erase(unique(ys[i].begin(),ys[i].end()),ys[i].end()); seg[i] = compressed_segtree<S,op,e>(ys[i]); } for(int i=size-1;i>=1;i--){ vector<long long> a(ys[i*2].rbegin(),ys[i*2].rend()), b(ys[i*2+1].rbegin(),ys[i*2+1].rend()); while(a.size()>0||b.size()>0){ if(a.size()==0){ swap(a,b); } else if(b.size()>0){ if(a.back()>b.back())swap(a,b); } if(ys[i].size()==0||ys[i].back()!=a.back())ys[i].push_back(a.back()); a.pop_back(); } seg[i] = compressed_segtree<S,op,e>(ys[i]); ys[i*2].clear(); ys[i*2+1].clear(); } } int lower_indx(long long p){ return distance(_tx.begin(),lower_bound(_tx.begin(),_tx.end(),p)); } int lower_indy(long long p){ return distance(_ty.begin(),lower_bound(_ty.begin(),_ty.end(),p)); } void set(long long px, long long py, S x) { px = lower_indx(px) + size; seg[px].set(py,x); for (int i = 1; i <= log; i++) update(px >> i, py); } S get(long long px, long long py) { int idx = lower_indx(px); if(idx!=_tx.size()&&_tx[idx]==px)return seg[idx+size].get(py); return e(); } S prod(long long lx,long long rx, long long ly, long long ry) { S sml = e(), smr = e(); lx = lower_indx(lx)+size; rx = lower_indx(rx)+size; while (lx < rx) { if (lx & 1) sml = op(sml, seg[lx++].prod(ly,ry)); if (rx & 1) smr = op(seg[--rx].prod(ly,ry), smr); lx >>= 1; rx >>= 1; } return op(sml, smr); } S all_prod() { return seg[1].all_prod(); } int size, log; vector<pair<long long,long long>> _tp; vector<long long> _tx,_ty; void update(int k, long long py) { seg[k].set(py, op(seg[2*k].get(py), seg[2*k+1].get(py))); } }; int op(int a,int b){ return a+b; } int e(){ return 0; } int main(){ int n,q; cin>>n>>q; vector<int> a(n); rep(i,n)scanf("%d",&a[i]); vector<int> ts(q),ls(q),rs(q); vector<int> vs = a; rep(i,q){ scanf("%d %d %d",&ts[i],&ls[i],&rs[i]); ls[i]--; if(ts[i]==1)vs.push_back(rs[i]); } sort(vs.begin(),vs.end()); vs.erase(unique(vs.begin(),vs.end()),vs.end()); vector<pair<long long,long long>> tp; rep(i,n){ a[i] = lower_bound(vs.begin(),vs.end(),a[i])-vs.begin(); tp.emplace_back(i,a[i]); } rep(i,q){ if(ts[i]==1){ rs[i] = lower_bound(vs.begin(),vs.end(),rs[i])-vs.begin(); tp.emplace_back(ls[i],rs[i]); } } sort(tp.begin(),tp.end()); tp.erase(unique(tp.begin(),tp.end()),tp.end()); compressed_2d_segtree<int,op,e> seg(tp); rep(i,n){ seg.set(i,a[i],1); } auto ta = a; tp.clear(); rep(i,n-1){ tp.emplace_back(i,max(a[i],a[i+1])); } rep(i,q){ if(ts[i]==1){ a[ls[i]] = rs[i]; if(ls[i]!=0){ tp.emplace_back(ls[i]-1,max(a[ls[i]-1],a[ls[i]])); } if(ls[i]!=n-1){ tp.emplace_back(ls[i],max(a[ls[i]],a[ls[i]+1])); } } } sort(tp.begin(),tp.end()); tp.erase(unique(tp.begin(),tp.end()),tp.end()); compressed_2d_segtree<int,op,e> seg2(tp); a = ta; rep(i,n-1){ seg2.set(i,max(a[i],a[i+1]),1); } rep(_,q){ int t = ts[_]; int l = ls[_],r = rs[_]; if(t==1){ int ii = ls[_]; seg.set(ii,a[ii],0); if(ii!=0){ seg2.set(ii-1,max(a[ii],a[ii-1]),0); } if(ii!=n-1){ seg2.set(ii,max(a[ii],a[ii+1]),0); } a[ii] = r; seg.set(ii,a[ii],1); if(ii!=0){ seg2.set(ii-1,max(a[ii],a[ii-1]),1); } if(ii!=n-1){ seg2.set(ii,max(a[ii],a[ii+1]),1); } } else{ int ok = 0,ng = vs.size(); while(ng-ok>1){ int mid = (ok+ng)/2; int x = seg.prod(l,r,0,mid); int y = seg2.prod(l,r-1,0,mid); if(r-l + y > 2*x)ok = mid; else ng= mid; } printf("%d\n",vs[ok]); } } return 0; }