結果
| 問題 | 
                            No.3111 Toll Optimization
                             | 
                    
| コンテスト | |
| ユーザー | 
                             | 
                    
| 提出日時 | 2025-04-19 02:17:45 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 288 ms / 5,000 ms | 
| コード長 | 3,120 bytes | 
| コンパイル時間 | 1,062 ms | 
| コンパイル使用メモリ | 91,068 KB | 
| 実行使用メモリ | 19,636 KB | 
| 最終ジャッジ日時 | 2025-04-19 02:18:00 | 
| 合計ジャッジ時間 | 12,420 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge4 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 70 | 
ソースコード
#include <iostream>
#include <vector>
#include <queue>
#include <tuple>
#include <limits>
using int64 = long long;
const int64 INF = 1e18;
template<class T>
class edge {
public:
    int to;
    T weight;
    edge(int to, T weight) : to{to}, weight{weight} {}
};
template<class T>
using Graph = std::vector<std::vector<edge<T>>>;
template<class T>
class Dijkstra {
private:
    Graph<T> g;
    const T INF = std::numeric_limits<T>::max() / 2;
    struct State {
        int v;
        T weight;
        State(int v, T weight) : v{v}, weight{weight} {}
        bool operator < (const State& s) const
        {
            return weight > s.weight;
        }
    };
public:
    Dijkstra(const Graph<T>& g) : g{g} {}
    std::vector<T> shortest_path(int s)
    {
        std::priority_queue<State> pq;
        pq.emplace(s, 0);
        std::vector<T> weight(g.size(), INF);
        weight[s] = 0;
        const auto& update = [&](const edge<T>& e, const State& s) -> bool
        {
            if (weight[s.v] + e.weight >= weight[e.to])
                return false;
            weight[e.to] = weight[s.v] + e.weight;
            return true;
        };
        while (!pq.empty()) {
            auto [v, w] = pq.top(); pq.pop();
            if (weight[v] < w)
                continue;
            for (const edge<T>& e : g[v])
                if (update(e, {v, w}))
                    pq.emplace(e.to, weight[e.to]);
        }
        return weight;
    }
    bool is_updated(T w)
    {
        return w != INF;
    }
};
int main()
{
    int N, M, K;
    std::cin >> N >> M >> K;
    
    Graph<int64> graph(N + 1);
    std::vector<int64> c(M);
    for (int i = 0; i < M; i++) {
        std::cin >> c[i];
    }
    for (int i = 0; i < M; i++) {
        int u, v;
        std::cin >> u >> v;
        u--; v--;
        graph[u].emplace_back(v, c[i]);
        graph[v].emplace_back(u, c[i]);
    }
    
    std::vector<std::vector<int64>> dist(N + 1, std::vector<int64>(K + 1, INF));
    dist[0][0] = 0;
    
    std::priority_queue<std::tuple<int64, int, int>, std::vector<std::tuple<int64, int, int>>, std::greater<>> pq;
    pq.push({0, 0, 0});
    
    while (!pq.empty()) {
        auto [cost, v, used_coupon] = pq.top();
        pq.pop();
        
        if (cost > dist[v][used_coupon]) continue;
        
        for (auto [next_v, edge_cost] : graph[v]) {
            if (dist[v][used_coupon] + edge_cost < dist[next_v][used_coupon]) {
                dist[next_v][used_coupon] = dist[v][used_coupon] + edge_cost;
                pq.push({dist[next_v][used_coupon], next_v, used_coupon});
            }
            
            if (used_coupon < K && dist[v][used_coupon] < dist[next_v][used_coupon + 1]) {
                dist[next_v][used_coupon+1] = dist[v][used_coupon];
                pq.push({dist[next_v][used_coupon + 1], next_v, used_coupon + 1});
            }
        }
    }
    
    int64 answer = INF;
    for (int k = 0; k <= K; k++) {
        answer = std::min(answer, dist[N - 1][k]);
    }
    
    std::cout << (answer == INF ? -1 : answer) << std::endl;
    
    return 0;
}