結果
| 問題 |
No.3112 Decrement or Mod Game
|
| コンテスト | |
| ユーザー |
aaaaaaaaaaa
|
| 提出日時 | 2025-04-19 11:37:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,851 bytes |
| コンパイル時間 | 929 ms |
| コンパイル使用メモリ | 80,864 KB |
| 実行使用メモリ | 225,224 KB |
| 最終ジャッジ日時 | 2025-04-19 11:37:22 |
| 合計ジャッジ時間 | 7,407 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | TLE * 1 -- * 64 |
ソースコード
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include <utility> // for pair
using namespace std;
map<pair<long long, long long>, bool> memo;
// Can the current player win starting with numbers (my, opp)?
// Returns true if the current player wins, false otherwise.
bool can_win(long long my, long long opp) {
// Base cases
if (my == 0) return false; // The previous player made my number 0, so they win, I lose.
if (opp == 0) return true; // I made the opponent's number 0 on my previous turn, so I win.
// Check memoization
if (memo.count({my, opp})) {
return memo[{my, opp}];
}
// Winning moves: make my number 0 on this turn
if (my == 1) return memo[{my, opp}] = true; // Subtract to 0
if (my >= opp && my % opp == 0) return memo[{my, opp}] = true; // Remainder to 0
// Recursive step: current player wins if they can move to a state where the opponent loses
// Case 1: my < opp
if (my < opp) {
// Must subtract. Opponent faces state (opp, my - 1).
// Current player wins if opponent loses from (opp, my - 1).
return memo[{my, opp}] = !can_win(opp, my - 1);
}
// Case 2: my >= opp
// Option 1: Use remainder operation (if my % opp != 0)
bool can_win_by_remainder = false;
if (my % opp != 0) {
// Opponent faces state (opp, my % opp).
// Current player wins if opponent loses from (opp, my % opp).
if (!can_win(opp, my % opp)) {
can_win_by_remainder = true;
}
}
// If we can win by remainder, take it.
if (can_win_by_remainder) {
return memo[{my, opp}] = true;
}
// If cannot win by remainder (or remainder not applicable, i.e., my % opp == 0 which is an immediate win),
// consider the subtract move.
// Apply the hypothesis: if my / opp >= 2, subtracting is a losing move if remainder wasn't winning.
// We only explore the subtract path if my / opp == 1.
if (my / opp >= 2) {
// Remainder wasn't winning (or not applicable and not an immediate win),
// and subtract is losing (by hypothesis when my/opp >= 2). Current player loses.
return memo[{my, opp}] = false;
} else { // my / opp == 1
// Check the subtract move.
// Opponent faces state (opp, my - 1).
// Current player wins if opponent loses from (opp, my - 1).
bool can_win_by_subtract = !can_win(opp, my - 1);
return memo[{my, opp}] = can_win_by_subtract;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
long long A, B;
cin >> A >> B;
// Alice starts the game with numbers A and B.
// Alice wins if can_win(A, B) is true.
if (can_win(A, B)) {
cout << "Alice" << endl;
} else {
cout << "Bob" << endl;
}
return 0;
}
aaaaaaaaaaa