結果
問題 |
No.3112 Decrement or Mod Game
|
ユーザー |
![]() |
提出日時 | 2025-04-19 12:26:15 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,198 bytes |
コンパイル時間 | 1,470 ms |
コンパイル使用メモリ | 90,172 KB |
実行使用メモリ | 7,848 KB |
最終ジャッジ日時 | 2025-04-19 12:26:19 |
合計ジャッジ時間 | 3,572 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 60 WA * 5 |
ソースコード
#include <iostream> #include <vector> #include <string> #include <unordered_map> #include <utility> // for pair #include <functional> // for hash using namespace std; // Custom hash for pair<long long, long long> for unordered_map struct pair_hash { template <class T1, class T2> std::size_t operator () (const std::pair<T1,T2> &p) const { auto h1 = std::hash<T1>{}(p.first); auto h2 = std::hash<T2>{}(p.second); // A common way to combine hashes, inspired by boost::hash_combine // Use different multipliers for better distribution return h1 ^ (h2 + 0x9e3779b97f4a7c15LL + (h1 << 12) + (h1 >> 4)); } }; // Use unordered_map for memoization with the custom hash unordered_map<pair<long long, long long>, bool, pair_hash> memo; // can_win(my, opp): Can the player whose turn it is, starting with numbers (my, opp), force a win? // Returns true if the current player wins, false otherwise. bool can_win(long long my, long long opp) { // Base case 1: If my number is 0, I cannot make a move to win. This state implies I lost on a previous turn. if (my == 0) return false; // Base case 2: If opponent's number is 0, I won on my previous turn. if (opp == 0) return true; // Immediate Win: Check if I can make my number 0 this turn. // If my number is a multiple of opponent's number (and my >= opp), using the remainder operation makes my number 0. if (my >= opp && my % opp == 0) { return memo[{my, opp}] = true; } // If my number is 1, I can subtract 1 to make it 0. if (my == 1) { return memo[{my, opp}] = true; } // Check memoization to avoid recomputing states. if (memo.count({my, opp})) { return memo[{my, opp}]; } // Optimization: If my < opp, the only move is Subtract. // As derived through analyzing the state transitions (my, opp) -> (opp, my-1) -> (my-1, opp-1) -> ... // for my < opp, the current player will eventually face a losing state (like (1, X) with X > 1) if the opponent plays optimally. // Thus, if my < opp, the current player loses. if (my < opp) { return memo[{my, opp}] = false; } // Evaluate possible moves for the current player (my >= opp and my % opp != 0 handled by immediate win) long long q = my / opp; // Quotient long long r = my % opp; // Remainder (r > 0 because my % opp != 0) bool res; // Result for the current state (my, opp) if (q >= 2) { // Apply the hypothesis for state space reduction, common in Euclidean-like games: // If the Remainder move is winning (!can_win(opp, r)), I win. // If the Remainder move is losing (can_win(opp, r)), I can still win via Subtract if q is odd. // This simplifies to: (!can_win(opp, r)) || (q % 2 == 1) // This avoids the potentially deep recursion of the Subtract move when q is large. res = !can_win(opp, r) || (q % 2 == 1); } else { // q == 1 (opp <= my < 2*opp and my % opp != 0) // In this range, both Remainder and Subtract are important strategic options. // The current player wins if either move leads to a state where the opponent loses. // Option 1: Remainder move leads to opponent facing (opp, r). Win if !can_win(opp, r). bool can_win_by_remainder = !can_win(opp, r); // Option 2: Subtract move leads to opponent facing (opp, my - 1). Win if !can_win(opp, my - 1). // This recursive call is the primary suspect for TLE if other optimizations are correct. bool can_win_by_subtract = !can_win(opp, my - 1); res = can_win_by_remainder || can_win_by_subtract; } // Store the computed result in the memoization table for the current state (my, opp) return memo[{my, opp}] = res; } int main() { // Optimize input/output operations ios_base::sync_with_stdio(false); cin.tie(NULL); long long A, B; cin >> A >> B; // Alice starts the game with numbers A and B. // Call can_win with Alice's number as 'my' and Bob's number as 'opp'. if (can_win(A, B)) { cout << "Alice" << endl; } else { cout << "Bob" << endl; } return 0; }