結果
問題 |
No.3123 Inversion
|
ユーザー |
|
提出日時 | 2025-04-19 13:20:35 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,880 bytes |
コンパイル時間 | 2,441 ms |
コンパイル使用メモリ | 197,656 KB |
実行使用メモリ | 261,156 KB |
最終ジャッジ日時 | 2025-04-19 13:21:08 |
合計ジャッジ時間 | 30,258 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 1 |
other | AC * 2 WA * 19 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; int main(){ ios::sync_with_stdio(false); cin.tie(nullptr); int T; ll M; cin >> T >> M; vector<int> Ns(T); int maxN = 0; for(int i = 0; i < T; i++){ cin >> Ns[i]; maxN = max(maxN, Ns[i]); } // 1) factorial vector<ll> fact(maxN+1, 0); fact[0] = 1; for(int i = 1; i <= maxN; i++){ fact[i] = fact[i-1] * i % M; } // 2) involution numbers a[n] vector<ll> a(maxN+1, 0); a[0] = 1; if(maxN >= 1) a[1] = 1; for(int n = 2; n <= maxN; n++){ a[n] = (a[n-1] + (ll)(n-1) * a[n-2]) % M; } // 3) central-symmetric count c[n] = (floor(n/2))! * 2^{floor(n/2)} mod M vector<ll> c(maxN+1, 0), pow2(maxN+1, 0); pow2[0] = 1; for(int i = 1; i <= maxN; i++){ pow2[i] = (pow2[i-1] * 2) % M; } // we also need factorial up to floor(maxN/2) int half = maxN/2; vector<ll> fact_half(half+1,0); fact_half[0] = 1; for(int i = 1; i <= half; i++){ fact_half[i] = fact_half[i-1] * i % M; } for(int n = 0; n <= maxN; n++){ int m = n/2; c[n] = fact_half[m] * pow2[m] % M; } // 4) intersection count d[n] = 2^{floor(n/2)} mod M vector<ll> d(maxN+1, 0); for(int n = 0; n <= maxN; n++){ d[n] = pow2[n/2]; } // 5) まとめて S[n] を計算 // S[0]=1, S[1]=1, S[2]=4 (検算済み) vector<ll> S(maxN+1, 0); if(maxN >= 0) S[0] = 1 % M; if(maxN >= 1) S[1] = 1 % M; if(maxN >= 2) S[2] = 4 % M; for(int n = 3; n <= maxN; n++){ ll v = (8LL * fact[n]) % M; v = (v - 4LL * a[n] % M + M) % M; v = (v - 8LL * c[n] % M + M) % M; v = (v + 2LL * d[n] % M) % M; S[n] = v; } // 出力 for(int n : Ns){ cout << S[n] << "\n"; } return 0; }