結果
| 問題 |
No.3119 A Little Cheat
|
| コンテスト | |
| ユーザー |
Yu_212
|
| 提出日時 | 2025-04-19 13:25:32 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 85 ms / 2,000 ms |
| コード長 | 6,018 bytes |
| コンパイル時間 | 3,366 ms |
| コンパイル使用メモリ | 289,824 KB |
| 実行使用メモリ | 7,844 KB |
| 最終ジャッジ日時 | 2025-04-19 13:25:41 |
| 合計ジャッジ時間 | 7,697 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 49 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int iinf = 1e9;
const ll inf = 1e18;
template<ll mod>
struct Mint {
using M=Mint; ll v;
M& put(ll x) { v=(x<mod)?x:x-mod; return *this; }
Mint(ll x=0) { put(x%mod+mod); }
M operator+(M m) {return M().put(v+m.v);}
M operator-(M m) {return M().put(v+mod-m.v);}
M operator*(M m) {return M().put(v*m.v%mod);}
M operator/(M m) {return M().put(v*m.inv().v%mod);}
M operator+=(M m) { return put(v+m.v); }
M operator-=(M m) { return put(v+mod-m.v); }
M operator*=(M m) { return put(v*m.v%mod); }
M operator/=(M m) { return put(v*m.inv().v%mod); }
bool operator==(M m) { return v==m.v; }
M pow(ll m) const {
M x=v, res=1;
while (m) {
if (m&1) res=res*x;
x=x*x; m>>=1;
}
return res;
}
M inv() { return pow(mod-2); }
};
template<ll mod>
ostream&operator<<(ostream&o,Mint<mod>v){return o<<v.v;}
template<typename T>
ostream& operator<<(ostream &o, vector<T> v) {
for (int i = 0; i < v.size(); i++)
o << v[i] << (i+1<v.size()?" ":"");
return o;
}
template <typename T>
struct SegTree {
using F = function<T(T, T)>;
int n;
F f;
T ti;
vector<T> dat;
SegTree() {}
SegTree(F f, T ti,int num) : f(f), ti(ti) {
n = max(__bit_ceil(num), 1);
dat.assign(n << 1, ti);
}
SegTree(F f,T ti,vector<T>&v):SegTree(f,ti,v.size()){
for (int i = 0; i < v.size(); i++)
dat[n + i] = v[i];
for(int i=n-1;i;i--) dat[i]=f(dat[i*2], dat[i*2+1]);
}
void set_val(int k, T x) {
dat[k += n] = x;
while(k >>= 1) dat[k] = f(dat[k*2], dat[k*2+1]);
}
T query(int a, int b) {
if (a >= b) return ti;
T vl = ti, vr = ti;
for (int l=a+n, r=b+n; l<r; l>>=1, r>>=1) {
if (l & 1) vl = f(vl, dat[l++]);
if (r & 1) vr = f(dat[--r], vr);
}
return f(vl, vr);
}
};
const int MOD = 998244353;
using mint = Mint<MOD>;
ll modpow(ll a, ll e){
ll r = 1;
a %= MOD;
while(e){
if(e&1) r = r * a % MOD;
a = a * a % MOD;
e >>= 1;
}
return r;
}
int main() {
cin.tie(0)->sync_with_stdio(false);
int N;
ll M;
cin >> N >> M;
vector<ll> A(N+2);
for(int i = 1; i <= N; i++) cin >> A[i];
// sentinel values for boundaries
A[0] = 0;
A[N+1] = M+1;
// 1) Term1 = M^{N-1} * sum_{i=1}^N (M - A[i])
ll sumMA = 0;
for(int i = 1; i <= N; i++){
sumMA = (sumMA + (M - A[i]) % MOD) % MOD;
}
ll powM_N = modpow(M, N);
ll powM_Nm1 = modpow(M, N-1);
ll term1 = powM_Nm1 * sumMA % MOD;
// DP states: dp_prev holds (prev_right_category, curr_right_category) -> count
using State = pair<int,int>;
vector<pair<State,ll>> dp_prev, dp_cur;
// build 3 intervals: [1,L], (L,R], (R+1,M]
auto build3 = [&](ll L, ll R){
vector<pair<ll,ll>> parts(3);
parts[0] = {1, min(L, R)};
parts[1] = {min(L, R)+1, max(L, R)};
parts[2] = {max(L, R)+1, M};
for(auto &p: parts) if(p.first > p.second) p = {1,0};
return parts;
};
// initialize i=1
{
auto pre = build3(A[0], A[1]);
auto nxt = build3(A[1], A[2]);
dp_prev.clear();
for(int p = 0; p < 3; p++){
auto &P = pre[p];
if(P.first > P.second) continue;
for(int n = 0; n < 3; n++){
auto &Q = nxt[n];
ll l = max(P.first, Q.first);
ll r = min(P.second, Q.second);
if(l <= r){
dp_prev.emplace_back(State(p,n), (r - l + 1) % MOD);
}
}
}
}
// main DP loop for i=2..N
for(int i = 2; i <= N; i++){
auto pre = build3(A[i-1], A[i]);
auto nxt = build3(A[i], A[i+1]);
bool forward = (A[i] > A[i-1]);
// prepare next states
vector<tuple<int,int,ll>> states;
for(int p = 0; p < 3; p++){
auto &P = pre[p]; if(P.first> P.second) continue;
for(int n = 0; n < 3; n++){
auto &Q = nxt[n]; if(Q.first>Q.second) continue;
ll l = max(P.first, Q.first);
ll r = min(P.second, Q.second);
if(l <= r){
states.emplace_back(p, n, (r - l + 1) % MOD);
}
}
}
dp_cur.clear();
for(auto &st: states){ dp_cur.emplace_back(State(get<0>(st), get<1>(st)), 0LL); }
// transitions
for(auto &prv: dp_prev){
int prev_rp = prv.first.first; // category for B[i-1] wrt (A[i-2],A[i-1]) - unused
int prev_rn = prv.first.second; // category for B[i-1] wrt (A[i-1],A[i])
ll cnt = prv.second;
if(cnt == 0) continue;
for(size_t idx = 0; idx < states.size(); idx++){
int rp_cur = get<0>(states[idx]); // B[i] category wrt (A[i-1],A[i])
int rn_cur = get<1>(states[idx]); // B[i] category wrt (A[i],A[i+1])
ll w = get<2>(states[idx]);
bool bad = false;
if(forward){
// forbid if B[i] in cat1 AND B[i-1] in cat0 or cat2
if(rp_cur==1 && (prev_rn==0 || prev_rn==2)) bad = true;
} else {
// forbid if B[i-1] in cat1 AND B[i] in cat0 or cat2
if(prev_rn==1 && (rp_cur==0 || rp_cur==2)) bad = true;
}
if(bad) continue;
dp_cur[idx].second = (dp_cur[idx].second + cnt * w) % MOD;
}
}
dp_prev.clear();
for(auto &c: dp_cur) if(c.second) dp_prev.push_back(c);
}
// sum counts for no-improvement sequences P
ll P = 0;
for(auto &pr: dp_prev) P = (P + pr.second) % MOD;
// final answer
ll ans = (term1 + (powM_N - P + MOD) % MOD) % MOD;
cout << ans << "\n";
return 0;
}
Yu_212