結果
| 問題 |
No.3123 Inversion
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 13:29:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,175 bytes |
| コンパイル時間 | 2,894 ms |
| コンパイル使用メモリ | 198,584 KB |
| 実行使用メモリ | 134,292 KB |
| 最終ジャッジ日時 | 2025-04-19 13:29:41 |
| 合計ジャッジ時間 | 24,880 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 1 |
| other | AC * 18 WA * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
ll M;
cin >> T >> M;
vector<int> Ns(T);
int maxN = 0;
for(int i = 0; i < T; i++){
cin >> Ns[i];
maxN = max(maxN, Ns[i]);
}
// 1) factorial mod M
vector<ll> fact(maxN+1);
fact[0] = 1;
for(int i = 1; i <= maxN; i++){
fact[i] = fact[i-1] * i % M;
}
// 2) involutions a[n]: a[0]=1, a[1]=1, a[n]=a[n-1]+(n-1)*a[n-2]
vector<ll> a(maxN+1);
a[0] = 1;
if(maxN >= 1) a[1] = 1;
for(int n = 2; n <= maxN; n++){
a[n] = (a[n-1] + (ll)(n-1) * a[n-2]) % M;
}
// 3) pow2 up to floor(maxN/2) for c[n]
int halfN = maxN/2;
vector<ll> pow2(halfN+1);
pow2[0] = 1;
for(int i = 1; i <= halfN; i++){
pow2[i] = (pow2[i-1] * 2) % M;
}
// 4) P[m] = product_{k=1..m}(4k-2) mod M for d[n]
int quarterN = maxN/4;
vector<ll> P(quarterN+1);
P[0] = 1;
for(int m = 1; m <= quarterN; m++){
// 4*m - 2 fits in ll
P[m] = (P[m-1] * (4LL*m - 2)) % M;
}
// 5) H[m] = number of involutions that are also 180°-symmetric on floor(n/2) pairs
// H[0]=1, H[1]=2, H[m]=2*H[m-1] + 2*(m-1)*H[m-2]
vector<ll> H(halfN+1);
H[0] = 1;
if(halfN >= 1) H[1] = 2 % M;
for(int m = 2; m <= halfN; m++){
H[m] = (2 * H[m-1] + 2LL*(m-1) * H[m-2]) % M;
}
// 6) 答えを計算
// c[n] = fact[floor(n/2)] * pow2[floor(n/2)]
// d[n] = (n%4==0 || n%4==1) ? P[floor(n/4)] : 0
// h[n] = H[floor(n/2)]
// S[n] = 8*fact[n] - 8*a[n] - 4*c[n] - 2*d[n] + 6*h[n] (mod M)
//
for(int n : Ns){
ll fn = fact[n];
ll an = a[n];
int m2 = n/2;
ll cn = (fact[m2] * pow2[m2]) % M;
int m4 = n/4;
ll dn = (n%4==0 || n%4==1) ? P[m4] : 0;
ll hn = H[m2];
ll S = 0;
S = (S + 8LL * fn) % M;
S = (S - 8LL * an % M + M) % M;
S = (S - 4LL * cn % M + M) % M;
S = (S - 2LL * dn % M + M) % M;
S = (S + 6LL * hn) % M;
cout << S << "\n";
}
return 0;
}