結果
| 問題 |
No.3122 Median of Medians of Division
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 15:06:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 4,605 bytes |
| コンパイル時間 | 2,686 ms |
| コンパイル使用メモリ | 213,588 KB |
| 実行使用メモリ | 155,844 KB |
| 最終ジャッジ日時 | 2025-04-19 15:07:05 |
| 合計ジャッジ時間 | 11,007 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 2 -- * 38 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
// Merge Sort Tree + Fenwick per node
struct Node {
vector<int> pos; // sorted unique positions
vector<int> bit; // Fenwick tree of size pos.size()+1
};
int N, Q;
vector<int> A;
vector<int> vals; // compressed values
vector<Node> segtree;
int M;
// collect positions for vid along tree
void collect(int idx, int l, int r, int vid, int p) {
segtree[idx].pos.push_back(p);
if (l == r) return;
int mid = (l + r) >> 1;
if (vid <= mid) collect(idx<<1, l, mid, vid, p);
else collect(idx<<1|1, mid+1, r, vid, p);
}
// build Fenwick per node
void build(int idx, int l, int r) {
auto &node = segtree[idx];
auto &v = node.pos;
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
node.bit.assign(v.size()+1, 0);
if (l == r) return;
int mid = (l + r) >> 1;
build(idx<<1, l, mid);
build(idx<<1|1, mid+1, r);
}
// Fenwick helpers
inline void fenwicks_update(vector<int> &bit, int i, int d) {
int n = bit.size();
for (; i < n; i += i & -i) bit[i] += d;
}
inline int fenwicks_sum(const vector<int> &bit, int i) {
int s = 0;
for (; i > 0; i -= i & -i) s += bit[i];
return s;
}
// update point p with delta at value vid
void updatePoint(int idx, int l, int r, int vid, int p, int delta) {
auto &node = segtree[idx];
int i = int(lower_bound(node.pos.begin(), node.pos.end(), p) - node.pos.begin()) + 1;
fenwicks_update(node.bit, i, delta);
if (l == r) return;
int mid = (l + r) >> 1;
if (vid <= mid) updatePoint(idx<<1, l, mid, vid, p, delta);
else updatePoint(idx<<1|1, mid+1, r, vid, p, delta);
}
// count positions in [ql,qr] in node idx
int countRange(int idx, int ql, int qr) {
auto &node = segtree[idx];
auto &v = node.pos;
int li = int(lower_bound(v.begin(), v.end(), ql) - v.begin()) + 1;
int ri = int(upper_bound(v.begin(), v.end(), qr) - v.begin());
if (ri < li) return 0;
return fenwicks_sum(node.bit, ri) - fenwicks_sum(node.bit, li-1);
}
// query k-th smallest valueID within positions [ql,qr]
int queryKth(int idx, int l, int r, int ql, int qr, int k) {
if (l == r) return l;
int mid = (l + r) >> 1;
int cnt = countRange(idx<<1, ql, qr);
if (cnt >= k) return queryKth(idx<<1, l, mid, ql, qr, k);
else return queryKth(idx<<1|1, mid+1, r, ql, qr, k - cnt);
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> N >> Q;
A.resize(N);
vals.reserve(N + Q);
for (int i = 0; i < N; i++) {
cin >> A[i];
vals.push_back(A[i]);
}
vector<tuple<int,int,int,int,int>> queries(Q);
for (int qi = 0; qi < Q; qi++) {
int t; cin >> t;
if (t == 1) {
int i, x; cin >> i >> x; --i;
queries[qi] = {t, i, x, 0, 0};
vals.push_back(x);
} else {
int l, r; cin >> l >> r; --l; --r;
queries[qi] = {t, 0, 0, l, r};
}
}
// compress values
sort(vals.begin(), vals.end());
vals.erase(unique(vals.begin(), vals.end()), vals.end());
M = vals.size();
auto getId = [&](int x){ return int(lower_bound(vals.begin(), vals.end(), x) - vals.begin()); };
// build segment tree structure over [0,M-1]
segtree.assign(4 * M + 4, Node());
// collect positions: initial A
for (int i = 0; i < N; i++) {
int vid = getId(A[i]);
collect(1, 0, M-1, vid, i);
}
// also collect for updates
for (auto &q : queries) {
int t = get<0>(q);
if (t == 1) {
int i = get<1>(q), x = get<2>(q);
int vid = getId(x);
collect(1, 0, M-1, vid, i);
}
}
// build Fenwick trees
build(1, 0, M-1);
// initialize with initial A
for (int i = 0; i < N; i++) {
int vid = getId(A[i]);
updatePoint(1, 0, M-1, vid, i, +1);
}
// answer queries
for (auto &q : queries) {
int t = get<0>(q);
if (t == 1) {
int i = get<1>(q), x = get<2>(q);
int oldv = getId(A[i]);
int newv = getId(x);
if (oldv != newv) {
updatePoint(1, 0, M-1, oldv, i, -1);
updatePoint(1, 0, M-1, newv, i, +1);
A[i] = x;
}
} else {
int l = get<3>(q), r = get<4>(q);
int len = r - l + 1;
int k = (len + 1) >> 1;
int vid = queryKth(1, 0, M-1, l, r, k);
cout << vals[vid] << '\n';
}
}
return 0;
}