結果

問題 No.3123 Inversion
ユーザー tassei903
提出日時 2025-04-19 15:25:13
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,641 ms / 10,000 ms
コード長 6,511 bytes
コンパイル時間 577 ms
コンパイル使用メモリ 82,060 KB
実行使用メモリ 317,432 KB
最終ジャッジ日時 2025-04-19 15:25:59
合計ジャッジ時間 43,193 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = lambda :sys.stdin.readline()[:-1]
ni = lambda :int(input())
na = lambda :list(map(int,input().split()))
yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES")
no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO")

#######################################################################

from collections import defaultdict
 
class UnionFind():
    def __init__(self, n):
        self.n = n
        self.parents = [-1] * n
 
    def find(self, x):
        if self.parents[x] < 0:
            return x
        else:
            self.parents[x] = self.find(self.parents[x])
            return self.parents[x]
 
    def union(self, x, y):
        x = self.find(x)
        y = self.find(y)
 
        if x == y:
            return
 
        if self.parents[x] > self.parents[y]:
            x, y = y, x
 
        self.parents[x] += self.parents[y]
        self.parents[y] = x
 
    def size(self, x):
        return -self.parents[self.find(x)]
 
    def same(self, x, y):
        return self.find(x) == self.find(y)
 
    def members(self, x):
        root = self.find(x)
        return [i for i in range(self.n) if self.find(i) == root]
 
    def roots(self):
        return [i for i, x in enumerate(self.parents) if x < 0]
 
    def group_count(self):
        return len(self.roots())
 
    def all_group_members(self):
        group_members = defaultdict(list)
        for member in range(self.n):
            group_members[self.find(member)].append(member)
        return group_members
 
    def __str__(self):
        return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())

def rev(p):
    n = len(p)
    return tuple([p[-1-i] for i in range(n)])
def inv(p):
    n = len(p)
    q = [-1] * n
    for i in range(n):
        q[p[i]] = i
    return tuple(q)

def naive1(n):
    from itertools import permutations
    a = []
    for p in permutations(range(n), n):
        a.append(p)
    N = len(a)
    uf = UnionFind(N)
    for p in permutations(range(n), n):
        uf.union(a.index(p), a.index(inv(p)))
        uf.union(a.index(p), a.index(rev(p)))
    ans = sum([uf.size(x) * uf.size(x) for x in uf.roots()])
    b = [0] * 9
    # print([uf.size(x) for x in uf.roots()])
    for x in uf.roots():
        b[uf.size(x)] += 1
    print(b)
    D = uf.all_group_members()
    c = 0
    for x in D:
        if uf.size(x) == 2:
            if inv(a[D[x][0]]) == a[D[x][0]]:
                c += 1
                # print(uf.size(x), [a[i] for i in D[x]])
        
        elif uf.size(x) ==8:
            continue
            print([a[i] for i in D[x]])

    return ans

def naive2(n):
    s = set()
    from itertools import permutations
    from collections import Counter
    ans = 0
    b = [0] * 10
    for p in permutations(range(n), n):
        if p in s:
            continue
        cnt = 0
        S = []
        for i in range(8):
            S.append(p)
            if i % 2 == 0:
                p = rev(p)
            else:
                p = inv(p)
        # print(Counter(S))
        cnt = len(set(S))
        s |= set(S)
        b[cnt] += 1
        # print(p, cnt)
        ans += cnt * cnt
    # print(b)
    return ans
def nxt(p, i):
    for j in range(i):
        if j % 2 == 0:
            p = rev(p)
        else:
            p = inv(p)
    return p
def naive4(n):
    s = set()
    from itertools import permutations
    from collections import Counter
    ans = 0
    b = [0] * 6
    for p in permutations(range(n), n):
        if p in s:
            continue
        cnt = 0
        S = []
        for i in range(8):
            S.append(p)
            if i % 2 == 0:
                p = rev(p)
            else:
                p = inv(p)
        # print(Counter(S))
        cnt = len(set(S))
        s |= set(S)
        if cnt == 1:
            b[0] += cnt
        elif cnt == 2 and S[0] == S[2]:
            # print(S)
            b[1] += cnt
        elif cnt == 2:
            # print(S)
            b[2] += cnt
        elif cnt == 4 and (S[0] == S[-1] or S[0] == S[3]):
            b[3] += cnt
            # print(S)
        elif cnt == 4:
            b[4] += cnt
            # print(S)
            assert (S[0] == S[4] and S[1] == S[5])
        else:
            b[5] += cnt
        # print(p, cnt)
        ans += cnt * cnt
    
    return b
def naive3(n):
    from itertools import permutations
    from math import factorial
    ans = 0
    b = [0] * 8
    for t in range(8):
        for p in permutations(range(n), n):
            if nxt(p, t) == p:
                b[t] += 1
    # print(b)
    # print(sum(b) // 8 * factorial(n))
    return sum(b) // 8 * factorial(n)



def a898(n):
    ans = 0
    for k in range(n + 1):
        ans += pow(2, k, mod) * s1(n, k) * b(k) % mod
        ans %= mod
    return ans

def a900(n):
    return (a85(n) - a898(n//2)) * pow(2, mod-2, mod) % mod

def a902(n):

    if n >= 3:
        return 2 * a902(n-1) + (2 * n - 2) * a902(n - 2)
    else:
        return 1




# # print(naive(5), naive2(5))
# print(naive2(4))
# print(naive3(4))
# for i in range(1, 9):
#     print(i, naive(i), naive2(i), naive3(i))
t, mod = na()

nn = 5 * 10 ** 6 + 10
fact = [1] * nn
for i in range(nn - 1):
    fact[i + 1] = fact[i] * (i + 1) % mod

Q = [0] * nn
Q[0] = 1
Q[1] = 1
for i in range(2, nn):
    Q[i] = (Q[i-1] + Q[i-2] * (i - 1) % mod) % mod
# print(Q[:10])
R = [0] * nn
R[0] = R[1] = 1
R[4] = 2
for i in range(5, nn):
    if i % 4 == 0:
        R[i] = R[i-4] * (i - 2) % mod
    elif i % 4 == 1:
        R[i] = R[i-1]
    else:
        R[i] = 0

G = [0] * nn
G[0] = 1
for i in range(1, nn):
    if i % 2 == 1:
        G[i] = G[i-1]
    else:
        G[i] = i * G[i-2] % mod

# print(G[:10])

B = [0] * nn
B[0] = B[1] = 1
B[2] = B[3] = 2
for i in range(4, nn):
    if i % 2 == 1:
        B[i] = B[i-1]
    else:
        B[i] = (2 * B[i-2] + (i - 2) * B[i-4]) % mod

# print(B[:10])
# for _ in range(t):
#     n = ni()
#     print(naive(n))
# for i in range(1, 10):
#     print(Q[i], R[i], G[i], B[i], f[i])
#     print(G[i] - R[i] - B[i], (Q[i] - B[i]) * 2)

ans = [0] * nn
for i in range(1, nn):
    F = [0] * 6
    if i == 1:
        F = [1, 0, 0, 0, 0, 0]
    else:
        F[1] = R[i]
        F[2] = B[i]
        F[3] = (Q[i] - B[i]) * 2
        F[4] = G[i] - R[i] - B[i]
        F[5] = fact[i] - sum(F[:5])
    ans[i] = F[0] * 1 + (F[1] + F[2]) * 2 + (F[3] + F[4]) * 4 + F[5] * 8
    ans[i] %= mod
    # print(F)

for _ in range(t):
    n = ni()
    print(ans[n])
0