結果
問題 |
No.3123 Inversion
|
ユーザー |
|
提出日時 | 2025-04-19 15:25:13 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,641 ms / 10,000 ms |
コード長 | 6,511 bytes |
コンパイル時間 | 577 ms |
コンパイル使用メモリ | 82,060 KB |
実行使用メモリ | 317,432 KB |
最終ジャッジ日時 | 2025-04-19 15:25:59 |
合計ジャッジ時間 | 43,193 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 21 |
ソースコード
import sys input = lambda :sys.stdin.readline()[:-1] ni = lambda :int(input()) na = lambda :list(map(int,input().split())) yes = lambda :print("yes");Yes = lambda :print("Yes");YES = lambda : print("YES") no = lambda :print("no");No = lambda :print("No");NO = lambda : print("NO") ####################################################################### from collections import defaultdict class UnionFind(): def __init__(self, n): self.n = n self.parents = [-1] * n def find(self, x): if self.parents[x] < 0: return x else: self.parents[x] = self.find(self.parents[x]) return self.parents[x] def union(self, x, y): x = self.find(x) y = self.find(y) if x == y: return if self.parents[x] > self.parents[y]: x, y = y, x self.parents[x] += self.parents[y] self.parents[y] = x def size(self, x): return -self.parents[self.find(x)] def same(self, x, y): return self.find(x) == self.find(y) def members(self, x): root = self.find(x) return [i for i in range(self.n) if self.find(i) == root] def roots(self): return [i for i, x in enumerate(self.parents) if x < 0] def group_count(self): return len(self.roots()) def all_group_members(self): group_members = defaultdict(list) for member in range(self.n): group_members[self.find(member)].append(member) return group_members def __str__(self): return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items()) def rev(p): n = len(p) return tuple([p[-1-i] for i in range(n)]) def inv(p): n = len(p) q = [-1] * n for i in range(n): q[p[i]] = i return tuple(q) def naive1(n): from itertools import permutations a = [] for p in permutations(range(n), n): a.append(p) N = len(a) uf = UnionFind(N) for p in permutations(range(n), n): uf.union(a.index(p), a.index(inv(p))) uf.union(a.index(p), a.index(rev(p))) ans = sum([uf.size(x) * uf.size(x) for x in uf.roots()]) b = [0] * 9 # print([uf.size(x) for x in uf.roots()]) for x in uf.roots(): b[uf.size(x)] += 1 print(b) D = uf.all_group_members() c = 0 for x in D: if uf.size(x) == 2: if inv(a[D[x][0]]) == a[D[x][0]]: c += 1 # print(uf.size(x), [a[i] for i in D[x]]) elif uf.size(x) ==8: continue print([a[i] for i in D[x]]) return ans def naive2(n): s = set() from itertools import permutations from collections import Counter ans = 0 b = [0] * 10 for p in permutations(range(n), n): if p in s: continue cnt = 0 S = [] for i in range(8): S.append(p) if i % 2 == 0: p = rev(p) else: p = inv(p) # print(Counter(S)) cnt = len(set(S)) s |= set(S) b[cnt] += 1 # print(p, cnt) ans += cnt * cnt # print(b) return ans def nxt(p, i): for j in range(i): if j % 2 == 0: p = rev(p) else: p = inv(p) return p def naive4(n): s = set() from itertools import permutations from collections import Counter ans = 0 b = [0] * 6 for p in permutations(range(n), n): if p in s: continue cnt = 0 S = [] for i in range(8): S.append(p) if i % 2 == 0: p = rev(p) else: p = inv(p) # print(Counter(S)) cnt = len(set(S)) s |= set(S) if cnt == 1: b[0] += cnt elif cnt == 2 and S[0] == S[2]: # print(S) b[1] += cnt elif cnt == 2: # print(S) b[2] += cnt elif cnt == 4 and (S[0] == S[-1] or S[0] == S[3]): b[3] += cnt # print(S) elif cnt == 4: b[4] += cnt # print(S) assert (S[0] == S[4] and S[1] == S[5]) else: b[5] += cnt # print(p, cnt) ans += cnt * cnt return b def naive3(n): from itertools import permutations from math import factorial ans = 0 b = [0] * 8 for t in range(8): for p in permutations(range(n), n): if nxt(p, t) == p: b[t] += 1 # print(b) # print(sum(b) // 8 * factorial(n)) return sum(b) // 8 * factorial(n) def a898(n): ans = 0 for k in range(n + 1): ans += pow(2, k, mod) * s1(n, k) * b(k) % mod ans %= mod return ans def a900(n): return (a85(n) - a898(n//2)) * pow(2, mod-2, mod) % mod def a902(n): if n >= 3: return 2 * a902(n-1) + (2 * n - 2) * a902(n - 2) else: return 1 # # print(naive(5), naive2(5)) # print(naive2(4)) # print(naive3(4)) # for i in range(1, 9): # print(i, naive(i), naive2(i), naive3(i)) t, mod = na() nn = 5 * 10 ** 6 + 10 fact = [1] * nn for i in range(nn - 1): fact[i + 1] = fact[i] * (i + 1) % mod Q = [0] * nn Q[0] = 1 Q[1] = 1 for i in range(2, nn): Q[i] = (Q[i-1] + Q[i-2] * (i - 1) % mod) % mod # print(Q[:10]) R = [0] * nn R[0] = R[1] = 1 R[4] = 2 for i in range(5, nn): if i % 4 == 0: R[i] = R[i-4] * (i - 2) % mod elif i % 4 == 1: R[i] = R[i-1] else: R[i] = 0 G = [0] * nn G[0] = 1 for i in range(1, nn): if i % 2 == 1: G[i] = G[i-1] else: G[i] = i * G[i-2] % mod # print(G[:10]) B = [0] * nn B[0] = B[1] = 1 B[2] = B[3] = 2 for i in range(4, nn): if i % 2 == 1: B[i] = B[i-1] else: B[i] = (2 * B[i-2] + (i - 2) * B[i-4]) % mod # print(B[:10]) # for _ in range(t): # n = ni() # print(naive(n)) # for i in range(1, 10): # print(Q[i], R[i], G[i], B[i], f[i]) # print(G[i] - R[i] - B[i], (Q[i] - B[i]) * 2) ans = [0] * nn for i in range(1, nn): F = [0] * 6 if i == 1: F = [1, 0, 0, 0, 0, 0] else: F[1] = R[i] F[2] = B[i] F[3] = (Q[i] - B[i]) * 2 F[4] = G[i] - R[i] - B[i] F[5] = fact[i] - sum(F[:5]) ans[i] = F[0] * 1 + (F[1] + F[2]) * 2 + (F[3] + F[4]) * 4 + F[5] * 8 ans[i] %= mod # print(F) for _ in range(t): n = ni() print(ans[n])