結果

問題 No.3122 Median of Medians of Division
ユーザー hirayuu_yc
提出日時 2025-04-19 16:03:08
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,276 ms / 2,000 ms
コード長 3,266 bytes
コンパイル時間 3,798 ms
コンパイル使用メモリ 291,928 KB
実行使用メモリ 36,756 KB
最終ジャッジ日時 2025-04-19 16:03:57
合計ジャッジ時間 41,231 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 40
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
import typing

def _ceil_pow2(n: int) -> int:
    x = 0
    while (1 << x) < n:
        x += 1
    return x

def _bsf(n: int) -> int:
    x = 0
    while n % 2 == 0:
        x += 1
        n //= 2
    return x

class SegTree:
    def __init__(self, op, e, v):
        ...
    def set(self, p, x):
        ...
    def get(self, p):
        ...
    def prod(self, left, right):
        ...
    def all_prod(self):
        ...
    def max_right(self, left, f):
        ...
    def min_left(self, right, f):
        ...
    def _update(self, k):
        ...

def op(x, y):
    return sorted(x+y)[2:]

N, Q = map(int, input().split())
A = list(map(int, input().split()))
A = [0] + A + [0]
seg = SegTree(op, [-(1<<60), -(1<<60)], N+1)
for i in range(N+1):
    seg.set(i, [min(A[i], A[i+1]), -(1<<60)])
for i in range(Q):
    t, x, y = map(int, input().split())
    if t == 1:
        A[x] = y
        seg.set(x-1, [min(A[x-1], A[x]), -(1<<60)])
        seg.set(x, [min(A[x], A[x+1]), -(1<<60)])
    else:
        print(op(seg.prod(x, y), [A[x], A[y]])[0])
*/

#include <bits/stdc++.h>
using namespace std;

using ll = long long;
using P = pair<ll, ll>;
using V = vector<ll>;

int _ceil_pow2(int n) {
    int x = 0;
    while ((1 << x) < n) x++;
    return x;
}

struct SegTree {
    using F = function<V(const V&, const V&)>;
    int _n, _size, _log;
    vector<V> _d;
    F _op;
    V _e;

    SegTree(F op, V e, int n) : _op(op), _e(e) {
        _n = n;
        _log = _ceil_pow2(n);
        _size = 1 << _log;
        _d.assign(2 * _size, _e);
    }

    void set(int p, V x) {
        assert(0 <= p && p < _n);
        p += _size;
        _d[p] = x;
        for (int i = 1; i <= _log; ++i) _update(p >> i);
    }

    V get(int p) {
        assert(0 <= p && p < _n);
        return _d[p + _size];
    }

    V prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        V sml = _e, smr = _e;
        l += _size;
        r += _size;
        while (l < r) {
            if (l & 1) sml = _op(sml, _d[l++]);
            if (r & 1) smr = _op(_d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return _op(sml, smr);
    }

    V all_prod() {
        return _d[1];
    }

    void _update(int k) {
        _d[k] = _op(_d[2 * k], _d[2 * k + 1]);
    }
};

V op(const V& x, const V& y) {
    vector<ll> merged = x;
    merged.insert(merged.end(), y.begin(), y.end());
    sort(merged.begin(), merged.end());
    merged.erase(merged.begin(), merged.begin() + 2);
    return merged;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int N, Q;
    cin >> N >> Q;
    vector<ll> A(N + 2);
    for (int i = 1; i <= N; ++i) cin >> A[i];

    V identity = {-(1LL << 60), -(1LL << 60)};
    SegTree seg(op, identity, N + 1);

    for (int i = 0; i <= N; ++i) {
        seg.set(i, {min(A[i], A[i + 1]), -(1LL << 60)});
    }

    for (int q = 0; q < Q; ++q) {
        int t, x, y;
        cin >> t >> x >> y;
        if (t == 1) {
            A[x] = y;
            seg.set(x - 1, {min(A[x - 1], A[x]), -(1LL << 60)});
            seg.set(x, {min(A[x], A[x + 1]), -(1LL << 60)});
        } else {
            V res = op(seg.prod(x, y), {A[x], A[y]});
            cout << res[0] << '\n';
        }
    }

    return 0;
}
0