結果
| 問題 |
No.3123 Inversion
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 16:10:22 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,165 bytes |
| コンパイル時間 | 414 ms |
| コンパイル使用メモリ | 12,416 KB |
| 実行使用メモリ | 337,960 KB |
| 最終ジャッジ日時 | 2025-04-19 16:10:48 |
| 合計ジャッジ時間 | 25,880 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | TLE * 1 -- * 20 |
ソースコード
import sys
MOD = 0
max_n = 5 * 10**6 + 10
fact = [1] * (max_n)
inv_fact = [1] * (max_n)
def main():
input = sys.stdin.read().split()
idx = 0
T = int(input[idx])
idx += 1
MOD = int(input[idx])
idx += 1
# Precompute factorials and inverse factorials modulo MOD
for i in range(1, max_n):
fact[i] = fact[i-1] * i % MOD
inv_fact[max_n-1] = pow(fact[max_n-1], MOD-2, MOD)
for i in range(max_n-2, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
for _ in range(T):
N = int(input[idx])
idx += 1
if N == 0:
print(1 % MOD)
continue
# Calculate the number of involutions (permutations where P^2 = identity)
involution = [0] * (N + 1)
involution[0] = 1
involution[1] = 1
for i in range(2, N + 1):
involution[i] = (involution[i-1] + (i-1) * involution[i-2]) % MOD
# Calculate the number of palindromic permutations (permutations where P = reverse(P))
palindrome = 1
if N % 2 == 0:
for i in range(1, N // 2 + 1):
palindrome = palindrome * i % MOD
palindrome = palindrome * palindrome % MOD
else:
for i in range(1, (N + 1) // 2 + 1):
palindrome = palindrome * i % MOD
palindrome = palindrome * palindrome % MOD
palindrome = palindrome * inv_fact[(N + 1) // 2] % MOD
# Calculate the number of permutations fixed by inversion followed by reversal
fixed = 1
if N % 2 == 0:
for i in range(1, N // 2 + 1):
fixed = fixed * i % MOD
fixed = fixed * fixed % MOD
else:
for i in range(1, (N + 1) // 2 + 1):
fixed = fixed * i % MOD
fixed = fixed * fixed % MOD
fixed = fixed * inv_fact[(N + 1) // 2] % MOD
# Total sum of orbit sizes using Burnside's Lemma
total = (fact[N] + involution[N] + palindrome + fixed) * pow(4, MOD-2, MOD) % MOD
print(total)
if __name__ == "__main__":
main()