結果
| 問題 |
No.3123 Inversion
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 16:21:50 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,731 bytes |
| コンパイル時間 | 787 ms |
| コンパイル使用メモリ | 73,832 KB |
| 実行使用メモリ | 42,368 KB |
| 最終ジャッジ日時 | 2025-04-19 16:22:14 |
| 合計ジャッジ時間 | 22,611 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 1 |
| other | RE * 14 TLE * 1 -- * 6 |
ソースコード
#include <iostream>
#include <vector>
using namespace std;
const int max_n = 5e2 + 10;
vector<long long> fact(max_n);
vector<long long> inv_fact(max_n);
long long MOD;
long long power(long long base, long long exp, long long mod) {
long long result = 1;
while (exp > 0) {
if (exp % 2 == 1) {
result = (result * base) % mod;
}
base = (base * base) % mod;
exp /= 2;
}
return result;
}
void precompute_factorials(int n, long long mod) {
fact[0] = 1;
for (int i = 1; i <= n; ++i) {
fact[i] = (fact[i-1] * i) % mod;
}
inv_fact[n] = power(fact[n], mod - 2, mod);
for (int i = n - 1; i >= 0; --i) {
inv_fact[i] = (inv_fact[i+1] * (i+1)) % mod;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T >> MOD;
precompute_factorials(max_n - 1, MOD);
while (T--) {
int N;
cin >> N;
if (N == 0) {
cout << 1 % MOD << '\n';
continue;
}
// Calculate the number of involutions (permutations where P^2 = identity)
vector<long long> involution(N + 1, 0);
involution[0] = 1;
involution[1] = 1;
for (int i = 2; i <= N; ++i) {
involution[i] = (involution[i-1] + (i-1) * involution[i-2]) % MOD;
}
// Calculate the number of palindromic permutations (permutations where P = reverse(P))
long long palindrome = 1;
if (N % 2 == 0) {
for (int i = 1; i <= N / 2; ++i) {
palindrome = (palindrome * i) % MOD;
}
palindrome = (palindrome * palindrome) % MOD;
} else {
for (int i = 1; i <= (N + 1) / 2; ++i) {
palindrome = (palindrome * i) % MOD;
}
palindrome = (palindrome * palindrome) % MOD;
palindrome = (palindrome * inv_fact[(N + 1) / 2]) % MOD;
}
// Calculate the number of permutations fixed by inversion followed by reversal
long long fixed = 1;
if (N % 2 == 0) {
for (int i = 1; i <= N / 2; ++i) {
fixed = (fixed * i) % MOD;
}
fixed = (fixed * fixed) % MOD;
} else {
for (int i = 1; i <= (N + 1) / 2; ++i) {
fixed = (fixed * i) % MOD;
}
fixed = (fixed * fixed) % MOD;
fixed = (fixed * inv_fact[(N + 1) / 2]) % MOD;
}
// Total sum of orbit sizes using Burnside's Lemma
long long total = (fact[N] + involution[N] + palindrome + fixed) % MOD;
total = (total * power(4, MOD - 2, MOD)) % MOD;
cout << total << '\n';
}
return 0;
}