結果
問題 |
No.3123 Inversion
|
ユーザー |
|
提出日時 | 2025-04-19 16:22:11 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 2,731 bytes |
コンパイル時間 | 887 ms |
コンパイル使用メモリ | 73,840 KB |
実行使用メモリ | 43,072 KB |
最終ジャッジ日時 | 2025-04-19 16:22:36 |
合計ジャッジ時間 | 24,456 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | -- * 1 |
other | RE * 14 TLE * 1 -- * 6 |
ソースコード
#include <iostream> #include <vector> using namespace std; const int max_n = 5e4 + 10; vector<long long> fact(max_n); vector<long long> inv_fact(max_n); long long MOD; long long power(long long base, long long exp, long long mod) { long long result = 1; while (exp > 0) { if (exp % 2 == 1) { result = (result * base) % mod; } base = (base * base) % mod; exp /= 2; } return result; } void precompute_factorials(int n, long long mod) { fact[0] = 1; for (int i = 1; i <= n; ++i) { fact[i] = (fact[i-1] * i) % mod; } inv_fact[n] = power(fact[n], mod - 2, mod); for (int i = n - 1; i >= 0; --i) { inv_fact[i] = (inv_fact[i+1] * (i+1)) % mod; } } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int T; cin >> T >> MOD; precompute_factorials(max_n - 1, MOD); while (T--) { int N; cin >> N; if (N == 0) { cout << 1 % MOD << '\n'; continue; } // Calculate the number of involutions (permutations where P^2 = identity) vector<long long> involution(N + 1, 0); involution[0] = 1; involution[1] = 1; for (int i = 2; i <= N; ++i) { involution[i] = (involution[i-1] + (i-1) * involution[i-2]) % MOD; } // Calculate the number of palindromic permutations (permutations where P = reverse(P)) long long palindrome = 1; if (N % 2 == 0) { for (int i = 1; i <= N / 2; ++i) { palindrome = (palindrome * i) % MOD; } palindrome = (palindrome * palindrome) % MOD; } else { for (int i = 1; i <= (N + 1) / 2; ++i) { palindrome = (palindrome * i) % MOD; } palindrome = (palindrome * palindrome) % MOD; palindrome = (palindrome * inv_fact[(N + 1) / 2]) % MOD; } // Calculate the number of permutations fixed by inversion followed by reversal long long fixed = 1; if (N % 2 == 0) { for (int i = 1; i <= N / 2; ++i) { fixed = (fixed * i) % MOD; } fixed = (fixed * fixed) % MOD; } else { for (int i = 1; i <= (N + 1) / 2; ++i) { fixed = (fixed * i) % MOD; } fixed = (fixed * fixed) % MOD; fixed = (fixed * inv_fact[(N + 1) / 2]) % MOD; } // Total sum of orbit sizes using Burnside's Lemma long long total = (fact[N] + involution[N] + palindrome + fixed) % MOD; total = (total * power(4, MOD - 2, MOD)) % MOD; cout << total << '\n'; } return 0; }