結果
問題 |
No.3121 Prime Dance
|
ユーザー |
|
提出日時 | 2025-04-19 16:24:57 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
RE
|
実行時間 | - |
コード長 | 2,261 bytes |
コンパイル時間 | 559 ms |
コンパイル使用メモリ | 12,544 KB |
実行使用メモリ | 11,648 KB |
最終ジャッジ日時 | 2025-04-19 16:24:59 |
合計ジャッジ時間 | 2,540 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | RE * 2 |
other | RE * 21 |
ソースコード
from itertools import product from collections import deque # Generate prime numbers up to n def generate_primes(n): sieve = [True] * (n + 1) sieve[0] = sieve[1] = False for i in range(2, int(n**0.5) + 1): if sieve[i]: for j in range(i*i, n + 1, i): sieve[j] = False return [i for i, is_p in enumerate(sieve) if is_p] # BFS to check if path is possible with exact A, B, C, D moves def path_exists(grid, sx, sy, gx, gy, A, B, C, D): H, W = len(grid), len(grid[0]) queue = deque() queue.append((sx, sy, A, B, C, D)) visited = set() visited.add((sx, sy, A, B, C, D)) while queue: x, y, a, b, c, d = queue.popleft() if (x, y) == (gx, gy) and a == b == c == d == 0: return True for dx, dy, use in [(1, 0, 'A'), (-1, 0, 'B'), (0, 1, 'C'), (0, -1, 'D')]: nx, ny = x + dx, y + dy if 0 <= nx < H and 0 <= ny < W and grid[nx][ny] != '#': na, nb, nc, nd = a, b, c, d if use == 'A' and na > 0: na -= 1 elif use == 'B' and nb > 0: nb -= 1 elif use == 'C' and nc > 0: nc -= 1 elif use == 'D' and nd > 0: nd -= 1 else: continue state = (nx, ny, na, nb, nc, nd) if state not in visited: visited.add(state) queue.append(state) return False def solve(H, W, Sx, Sy, Gx, Gy, grid): Sx -= 1 Sy -= 1 Gx -= 1 Gy -= 1 dx = Gx - Sx dy = Gy - Sy primes = generate_primes(40) min_ops = float('inf') for A, B in product(primes, repeat=2): if A - B != dx: continue for C, D in product(primes, repeat=2): if C - D != dy: continue total_ops = A + B + C + D if path_exists(grid, Sx, Sy, Gx, Gy, A, B, C, D): min_ops = min(min_ops, total_ops) return min_ops if min_ops != float('inf') else -1 # Input parsing def main(): H, W = map(int, input().split()) Sx, Sy, Gx, Gy = map(int, input().split()) grid = [input().strip() for _ in range(H)] print(solve(H, W, Sx, Sy, Gx, Gy, grid)) if __name__ == "__main__": main()