結果
| 問題 |
No.3121 Prime Dance
|
| ユーザー |
|
| 提出日時 | 2025-04-19 20:34:00 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,662 bytes |
| コンパイル時間 | 385 ms |
| コンパイル使用メモリ | 12,800 KB |
| 実行使用メモリ | 12,032 KB |
| 最終ジャッジ日時 | 2025-04-19 20:34:03 |
| 合計ジャッジ時間 | 2,380 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 2 |
| other | RE * 21 |
ソースコード
from collections import deque
import sys
input = sys.stdin.readline
def sieve(n):
is_prime = [True]*(n+1)
if n >= 0: is_prime[0] = False
if n >= 1: is_prime[1] = False
for i in range(2, int(n**0.5)+1):
if is_prime[i]:
for j in range(i*i, n+1, i):
is_prime[j] = False
return is_prime
def find_shift(c0, d0, can_loop, is_prime, LIMIT):
"""Return smallest x≥0 so that c0+x and d0+x are both prime.
If can_loop is False, only x=0 is allowed (and we require c0,d0 themselves to be prime)."""
if not can_loop:
return 0 if c0<=LIMIT and d0<=LIMIT and is_prime[c0] and is_prime[d0] else None
for x in range(LIMIT+1):
cc = c0 + x
dd = d0 + x
if cc <= LIMIT and dd <= LIMIT and is_prime[cc] and is_prime[dd]:
return x
return None
def bfs_with_mask(H, W, grid, Sx, Sy, Gx, Gy, need_v, need_h, DIRS):
"""
BFS from S to G, returning one *shortest* simple path that
- if need_v is True, must include ≥1 vertical move (dx!=0)
- if need_h is True, must include ≥1 horizontal move (dy!=0)
Returns (A0,B0,C0,D0, base_len), or None if no such path.
"""
# Build initial state
# state = (x, y, used_v?, used_h?) depending on flags
# We'll pack into a tuple of length 2/3/4
def make_state(x, y, uv, uh):
if need_v and need_h: return (x,y,uv,uh)
if need_v: return (x,y,uv)
if need_h: return (x,y,uh)
return (x,y)
start = make_state(Sx, Sy, False, False)
target_checks = []
if need_v and need_h:
def is_target(st): return st[0]==Gx and st[1]==Gy and st[2] and st[3]
elif need_v:
def is_target(st): return st[0]==Gx and st[1]==Gy and st[2]
elif need_h:
def is_target(st): return st[0]==Gx and st[1]==Gy and st[2]
else:
def is_target(st): return st[0]==Gx and st[1]==Gy
# BFS
dq = deque([start])
visited = {start}
parent = {start: None}
move_from = {} # child_state -> (dx,dy)
while dq:
st = dq.popleft()
x,y = st[0], st[1]
uv = st[2] if need_v else False
uh = st[3] if need_h else False
# stop if we reached a valid target
if is_target(st):
# reconstruct path
path = []
cur = st
while parent[cur] is not None:
dx,dy = move_from[cur]
path.append((dx,dy))
cur = parent[cur]
path.reverse()
# count moves
A0 = sum(1 for dx,dy in path if dx==1 and dy==0)
B0 = sum(1 for dx,dy in path if dx==-1 and dy==0)
C0 = sum(1 for dx,dy in path if dx==0 and dy==1)
D0 = sum(1 for dx,dy in path if dx==0 and dy==-1)
return A0,B0,C0,D0,len(path)
# expand
for dx,dy in DIRS:
nx, ny = x+dx, y+dy
if not (0<=nx<H and 0<=ny<W): continue
if grid[nx][ny] == '#': continue
uv2 = uv or (dx!=0 and need_v)
uh2 = uh or (dy!=0 and need_h)
nxt = make_state(nx,ny,uv2,uh2)
if nxt in visited: continue
visited.add(nxt)
parent[nxt] = st
move_from[nxt] = (dx,dy)
dq.append(nxt)
return None # no path satisfying mask
def solve():
H, W = map(int, input().split())
Sx, Sy = map(int, input().split())
Gx, Gy = map(int, input().split())
Sx-=1; Sy-=1; Gx-=1; Gy-=1
grid = [input().rstrip() for _ in range(H)]
# Pre‐sieve primes up to max possible base_len + 2000
LIMIT = H*W + 2000
is_prime = sieve(LIMIT)
# Fixed neighbor order (any is fine for BFS min‐length; tie‐breaking might vary, but masks handle detours)
DIRS = [(1,0),(-1,0),(0,1),(0,-1)]
best = float('inf')
# Try all 4 masks: 0=no required axis, 1=vertical, 2=horizontal, 3=both
for mask in range(4):
need_v = bool(mask & 1)
need_h = bool(mask & 2)
res = bfs_with_mask(H,W,grid,Sx,Sy,Gx,Gy,need_v,need_h,DIRS)
if res is None:
continue
A0,B0,C0,D0,base_len = res
# loops can only go where path has that axis
can_vert = (A0+B0) > 0
can_horz = (C0+D0) > 0
x = find_shift(A0, B0, can_vert, is_prime, LIMIT)
if x is None:
continue
y = find_shift(C0, D0, can_horz, is_prime, LIMIT)
if y is None:
continue
total = base_len + 2*(x+y)
if total < best:
best = total
print(best if best < float('inf') else -1)
if __name__ == "__main__":
solve()