結果
問題 |
No.3111 Toll Optimization
|
ユーザー |
|
提出日時 | 2025-04-19 20:43:13 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 376 ms / 5,000 ms |
コード長 | 2,573 bytes |
コンパイル時間 | 3,010 ms |
コンパイル使用メモリ | 231,196 KB |
実行使用メモリ | 56,132 KB |
最終ジャッジ日時 | 2025-04-19 20:43:32 |
合計ジャッジ時間 | 14,900 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 70 |
ソースコード
// (◕ᴗ◕✿) // #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> #define rep(i, n) for (ll i = 0; i < (n); i++) #define srep(i, s, n) for (ll i = s; i < (n); i++) #define len(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() using namespace std; template<typename T> using vc = vector<T>; template<typename T> using vv = vc<vc<T>>; template<typename T> using vvv = vv<vc<T>>; using vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>; using ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>; using ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>; using uint = unsigned int; using ull = unsigned long long; const ld pi = acos(-1.0); const int inf = 0x3f3f3f3f; const ll INF = 0x3f3f3f3f3f3f3f3f; // const ll mod = 1000000007; const ll mod = 998244353; inline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); } #define debug(var) do{std::cout << #var << " : \n";view(var);}while(0) template<typename T> void view(T e){cout << e << endl;} template<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << " "; } cout << endl;} template<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } } tuple<vl, vi> dijkstra(int s, int N, vv<pair<int, ll>> &g){ using P = pair<ll, int>; vl dist(N, INF); vi bef(N); priority_queue<P, vc<P>, greater<P>> q; dist[s] = 0; q.push({0, s}); while (!q.empty()){ auto [c, now] = q.top();q.pop(); if (dist[now] < c) continue; for (auto&& [nxt, nc]: g[now]) if (dist[nxt] > c + nc){ dist[nxt] = c + nc; bef[nxt] = now; q.push({dist[nxt], nxt}); } } return {dist, bef}; } int main(){ int N, M, K; cin >> N >> M >> K; vl C(M); rep(i, M) cin >> C[i]; vv<pair<int, ll>> g(N * (K + 1)); rep(i, M){ int u, v; cin >> u >> v; u--; v--; rep(j, K + 1){ g[u * (K + 1) + j].push_back({v * (K + 1) + j, C[i]}); g[v * (K + 1) + j].push_back({u * (K + 1) + j, C[i]}); } rep(j, K){ g[u * (K + 1) + j].push_back({v * (K + 1) + j + 1, 0}); g[v * (K + 1) + j].push_back({u * (K + 1) + j + 1, 0}); } } auto [dist, bef] = dijkstra(0, N * (K + 1), g); ll ans = INF; rep(j, K + 1) ans = min(ans, dist[(N - 1) * (K + 1) + j]); if (ans == INF) cout << -1 << endl; else cout << ans << endl; }