結果
| 問題 |
No.3111 Toll Optimization
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-19 20:43:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 376 ms / 5,000 ms |
| コード長 | 2,573 bytes |
| コンパイル時間 | 3,010 ms |
| コンパイル使用メモリ | 231,196 KB |
| 実行使用メモリ | 56,132 KB |
| 最終ジャッジ日時 | 2025-04-19 20:43:32 |
| 合計ジャッジ時間 | 14,900 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 70 |
ソースコード
// (◕ᴗ◕✿)
// #pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define srep(i, s, n) for (ll i = s; i < (n); i++)
#define len(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
using namespace std;
template<typename T> using vc = vector<T>;
template<typename T> using vv = vc<vc<T>>;
template<typename T> using vvv = vv<vc<T>>;
using vi = vc<int>;using vvi = vv<int>; using vvvi = vv<vi>;
using ll = long long;using vl = vc<ll>;using vvl = vv<ll>; using vvvl = vv<vl>;
using ld = long double; using vld = vc<ld>; using vvld = vc<vld>; using vvvld = vc<vvld>;
using uint = unsigned int;
using ull = unsigned long long;
const ld pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
// const ll mod = 1000000007;
const ll mod = 998244353;
inline bool inside(ll y, ll x, ll H, ll W) {return 0 <= (y) and (y) < (H) and 0 <= (x) and (x) < (W); }
#define debug(var) do{std::cout << #var << " : \n";view(var);}while(0)
template<typename T> void view(T e){cout << e << endl;}
template<typename T> void view(const vc<T>& v){for(const auto& e : v){ cout << e << " "; } cout << endl;}
template<typename T> void view(const vv<T>& vv){ for(const auto& v : vv){ view(v); } }
tuple<vl, vi> dijkstra(int s, int N, vv<pair<int, ll>> &g){
using P = pair<ll, int>;
vl dist(N, INF);
vi bef(N);
priority_queue<P, vc<P>, greater<P>> q;
dist[s] = 0;
q.push({0, s});
while (!q.empty()){
auto [c, now] = q.top();q.pop();
if (dist[now] < c) continue;
for (auto&& [nxt, nc]: g[now]) if (dist[nxt] > c + nc){
dist[nxt] = c + nc;
bef[nxt] = now;
q.push({dist[nxt], nxt});
}
}
return {dist, bef};
}
int main(){
int N, M, K; cin >> N >> M >> K;
vl C(M); rep(i, M) cin >> C[i];
vv<pair<int, ll>> g(N * (K + 1));
rep(i, M){
int u, v; cin >> u >> v; u--; v--;
rep(j, K + 1){
g[u * (K + 1) + j].push_back({v * (K + 1) + j, C[i]});
g[v * (K + 1) + j].push_back({u * (K + 1) + j, C[i]});
}
rep(j, K){
g[u * (K + 1) + j].push_back({v * (K + 1) + j + 1, 0});
g[v * (K + 1) + j].push_back({u * (K + 1) + j + 1, 0});
}
}
auto [dist, bef] = dijkstra(0, N * (K + 1), g);
ll ans = INF;
rep(j, K + 1) ans = min(ans, dist[(N - 1) * (K + 1) + j]);
if (ans == INF) cout << -1 << endl;
else cout << ans << endl;
}