結果
| 問題 |
No.3118 Increment or Multiply
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-04-20 22:59:27 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 687 ms / 2,000 ms |
| コード長 | 1,890 bytes |
| コンパイル時間 | 390 ms |
| コンパイル使用メモリ | 12,544 KB |
| 実行使用メモリ | 12,536 KB |
| 最終ジャッジ日時 | 2025-04-20 22:59:38 |
| 合計ジャッジ時間 | 10,643 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 35 |
ソースコード
import sys
def main():
data = sys.stdin.read().split()
it = iter(data)
T = int(next(it))
mod = 998244353
i2 = pow(2, mod-2, mod)
out_lines = []
for _ in range(T):
N = int(next(it))
A = int(next(it))
# Case A == 1: sum of first N-1 pairs
if A == 1:
n_mod = N % mod
ret = n_mod * (n_mod - 1) % mod * i2 % mod
out_lines.append(str(ret))
continue
# Determine maximum exponent e such that A^e <= N
b = 1
e = 0
while b <= N // A:
b *= A
e += 1
size = e + 10
x = [0] * size
power = [0] * size
res = [0] * size
# x[i] = floor(N / A^i)
x[0] = N
for i in range(1, size):
x[i] = x[i-1] // A
# reduce modulo for later arithmetic
# power[i] = (A^i) % mod
power[0] = 1
a_mod = A % mod
for i in range(1, size):
power[i] = power[i-1] * a_mod % mod
# res[i] = sum_{j < i} (floor(N/A^j) mod A)
for i in range(1, size):
res[i] = (res[i-1] + (x[i-1] % A)) % mod
for i in range(size):
x[i] %= mod
ans = 0
for i in range(e + 1):
if i != e:
d = (power[e-i] - x[i+1] - 1) % mod
if d > 0:
ans = (ans + d * (d + 1) % mod * i2) % mod
ans = (ans + d * (x[i] - power[e-i]) % mod) % mod
ans = (ans + d * (i + res[i]) % mod) % mod
# For range A^{e-i} <= z <= floor(N/A^i)
t = (x[i] - power[e-i]) % mod
ans = (ans + t * (t + 1) % mod * i2) % mod
ans = (ans + (i + res[i]) * (t + 1) % mod) % mod
out_lines.append(str(ans))
sys.stdout.write("\n".join(out_lines))
if __name__ == '__main__':
main()