結果
| 問題 |
No.2084 Mex Subset For All Sequences
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-04-24 12:20:48 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 166 ms / 2,000 ms |
| コード長 | 2,210 bytes |
| コンパイル時間 | 174 ms |
| コンパイル使用メモリ | 82,384 KB |
| 実行使用メモリ | 91,176 KB |
| 最終ジャッジ日時 | 2025-04-24 12:22:58 |
| 合計ジャッジ時間 | 4,016 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
MOD = 998244353
def main():
import sys
N, M = map(int, sys.stdin.readline().split())
if M == 0:
print(0)
return
max_fact = M + 2
fact = [1] * (max_fact + 1)
for i in range(1, max_fact + 1):
fact[i] = fact[i-1] * i % MOD
inv_fact = [1] * (max_fact + 1)
inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD)
for i in range(max_fact - 1, -1, -1):
inv_fact[i] = inv_fact[i+1] * (i+1) % MOD
def comb(n, k):
if k < 0 or k > n:
return 0
return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD
# Precompute C(M, s) for s in 0..M
C = [0] * (M + 1)
for s in range(0, M + 1):
C[s] = comb(M, s)
pow_M_N = pow(M, N, MOD)
# Precompute (2M-1 - s)^N mod MOD for s in 0..M-1
pow_2M_1_minus_s_N = []
for s in range(0, M):
base = (2 * M - 1 - s) % MOD
pow_val = pow(base, N, MOD)
pow_2M_1_minus_s_N.append(pow_val)
# Precompute (2M - s)^N mod MOD for s in 0..M
pow_2M_minus_s_N = []
for s in range(0, M + 1):
base = (2 * M - s) % MOD
pow_val = pow(base, N, MOD)
pow_2M_minus_s_N.append(pow_val)
sum_part1 = 0
for s in range(0, M):
term1 = pow_2M_1_minus_s_N[s]
term2 = pow_M_N
diff = (term1 - term2) % MOD
sign_mod = 1 if s % 2 == 0 else MOD - 1
c1 = comb(M, s + 1)
c2 = comb(M, s + 2)
binomial_part = (s * c1 + (s + 1) * c2) % MOD
contribution = (sign_mod * diff) % MOD
contribution = contribution * binomial_part % MOD
sum_part1 = (sum_part1 + contribution) % MOD
sum_part2 = 0
for s in range(0, M + 1):
term1 = pow_2M_minus_s_N[s]
term2 = pow_M_N
diff = (term1 - term2) % MOD
sign_mod = 1 if s % 2 == 0 else MOD - 1
c = C[s]
contribution = (sign_mod * c) % MOD
contribution = contribution * diff % MOD
contribution = contribution * M % MOD
sum_part2 = (sum_part2 + contribution) % MOD
total = (sum_part1 + sum_part2) % MOD
print(total)
if __name__ == "__main__":
main()
qwewe