結果
問題 |
No.2084 Mex Subset For All Sequences
|
ユーザー |
![]() |
提出日時 | 2025-04-24 12:20:48 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 166 ms / 2,000 ms |
コード長 | 2,210 bytes |
コンパイル時間 | 174 ms |
コンパイル使用メモリ | 82,384 KB |
実行使用メモリ | 91,176 KB |
最終ジャッジ日時 | 2025-04-24 12:22:58 |
合計ジャッジ時間 | 4,016 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 |
ソースコード
MOD = 998244353 def main(): import sys N, M = map(int, sys.stdin.readline().split()) if M == 0: print(0) return max_fact = M + 2 fact = [1] * (max_fact + 1) for i in range(1, max_fact + 1): fact[i] = fact[i-1] * i % MOD inv_fact = [1] * (max_fact + 1) inv_fact[max_fact] = pow(fact[max_fact], MOD-2, MOD) for i in range(max_fact - 1, -1, -1): inv_fact[i] = inv_fact[i+1] * (i+1) % MOD def comb(n, k): if k < 0 or k > n: return 0 return fact[n] * inv_fact[k] % MOD * inv_fact[n - k] % MOD # Precompute C(M, s) for s in 0..M C = [0] * (M + 1) for s in range(0, M + 1): C[s] = comb(M, s) pow_M_N = pow(M, N, MOD) # Precompute (2M-1 - s)^N mod MOD for s in 0..M-1 pow_2M_1_minus_s_N = [] for s in range(0, M): base = (2 * M - 1 - s) % MOD pow_val = pow(base, N, MOD) pow_2M_1_minus_s_N.append(pow_val) # Precompute (2M - s)^N mod MOD for s in 0..M pow_2M_minus_s_N = [] for s in range(0, M + 1): base = (2 * M - s) % MOD pow_val = pow(base, N, MOD) pow_2M_minus_s_N.append(pow_val) sum_part1 = 0 for s in range(0, M): term1 = pow_2M_1_minus_s_N[s] term2 = pow_M_N diff = (term1 - term2) % MOD sign_mod = 1 if s % 2 == 0 else MOD - 1 c1 = comb(M, s + 1) c2 = comb(M, s + 2) binomial_part = (s * c1 + (s + 1) * c2) % MOD contribution = (sign_mod * diff) % MOD contribution = contribution * binomial_part % MOD sum_part1 = (sum_part1 + contribution) % MOD sum_part2 = 0 for s in range(0, M + 1): term1 = pow_2M_minus_s_N[s] term2 = pow_M_N diff = (term1 - term2) % MOD sign_mod = 1 if s % 2 == 0 else MOD - 1 c = C[s] contribution = (sign_mod * c) % MOD contribution = contribution * diff % MOD contribution = contribution * M % MOD sum_part2 = (sum_part2 + contribution) % MOD total = (sum_part1 + sum_part2) % MOD print(total) if __name__ == "__main__": main()