結果
問題 |
No.2445 奇行列式
|
ユーザー |
![]() |
提出日時 | 2025-04-24 12:21:54 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,969 ms / 3,000 ms |
コード長 | 1,574 bytes |
コンパイル時間 | 312 ms |
コンパイル使用メモリ | 83,016 KB |
実行使用メモリ | 78,092 KB |
最終ジャッジ日時 | 2025-04-24 12:24:08 |
合計ジャッジ時間 | 19,588 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 20 |
ソースコード
n, B = map(int, input().split()) matrix = [list(map(int, input().split())) for _ in range(n)] def compute_permanent(matrix): n = len(matrix) if n == 0: return 0 row_sum = [0] * n prev_g = 0 permanent = 0 for k in range(1, 1 << n): g = k ^ (k >> 1) delta = g ^ prev_g j = (delta).bit_length() - 1 if (g >> j) & 1: for i in range(n): row_sum[i] += matrix[i][j] else: for i in range(n): row_sum[i] -= matrix[i][j] prev_g = g k_bits = bin(g).count('1') sign = (-1) ** (n - k_bits) product = 1 for s in row_sum: product *= s permanent += sign * product return permanent def determinant(mat): n = len(mat) M = [row[:] for row in mat] det = 1 for i in range(n): pivot = i while pivot < n and M[pivot][i] == 0: pivot += 1 if pivot == n: return 0 if pivot != i: M[i], M[pivot] = M[pivot], M[i] det = -det for j in range(i + 1, n): while M[j][i] != 0: ratio = M[j][i] // M[i][i] for k in range(i, n): M[j][k] -= ratio * M[i][k] if M[j][i] != 0: M[i], M[j] = M[j], M[i] det = -det else: break det *= M[i][i] return det S = compute_permanent(matrix) D = determinant(matrix) O = (S - D) // 2 result = O % B print(result)