結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-04-24 12:27:57 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,284 bytes |
| コンパイル時間 | 188 ms |
| コンパイル使用メモリ | 82,572 KB |
| 実行使用メモリ | 141,760 KB |
| 最終ジャッジ日時 | 2025-04-24 12:29:51 |
| 合計ジャッジ時間 | 8,048 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 3 TLE * 1 -- * 59 |
ソースコード
MOD = 998244353
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
N = int(input[ptr])
ptr += 1
M0 = []
for _ in range(N):
row = list(map(int, input[ptr:ptr+N]))
ptr += N
M0.append(row)
M1 = []
for _ in range(N):
row = list(map(int, input[ptr:ptr+N]))
ptr += N
M1.append(row)
# Evaluation points are x = 0, 1, ..., N
xs = list(range(N + 1))
ys = []
for x in xs:
# Compute M = M0 + x * M1
M = []
for i in range(N):
row = []
for j in range(N):
val = (M0[i][j] + x * M1[i][j]) % MOD
row.append(val)
M.append(row)
# Compute determinant using Gaussian elimination
det = 1
sign = 1
mat = [row.copy() for row in M]
for col in range(N):
# Find pivot row
pivot_row = None
for r in range(col, N):
if mat[r][col] != 0:
pivot_row = r
break
if pivot_row is None:
det = 0
break
# Swap with current row
if pivot_row != col:
mat[col], mat[pivot_row] = mat[pivot_row], mat[col]
sign *= -1
# Multiply determinant by the pivot element
pivot_val = mat[col][col]
det = (det * pivot_val) % MOD
# Compute inverse of pivot
inv_pivot = pow(pivot_val, MOD - 2, MOD)
# Eliminate lower rows
for r in range(col + 1, N):
factor = (mat[r][col] * inv_pivot) % MOD
for c in range(col, N):
mat[r][c] = (mat[r][c] - factor * mat[col][c]) % MOD
if det != 0:
det = (det * sign) % MOD
ys.append(det)
# Precompute d_i = product_{j != i} (x_i - x_j)
d = []
for i in range(N + 1):
xi = xs[i]
di = 1
for j in range(N + 1):
if j == i:
continue
term = (xi - xs[j]) % MOD
di = (di * term) % MOD
d.append(di)
# Function to multiply a polynomial by (x - c)
def multiply_poly(poly, c):
# poly is a list of coefficients, returns new polynomial
new_poly = [0] * (len(poly) + 1)
for i in range(len(poly)):
new_poly[i] = (new_poly[i] - poly[i] * c) % MOD
new_poly[i + 1] = (new_poly[i + 1] + poly[i]) % MOD
return new_poly
# Compute the coefficients a_0 ... a_N
a = [0] * (N + 1)
for i in range(N + 1):
# Compute numerator polynomial N_i(x) = product_{j != i} (x - x_j)
numerator = [1]
for j in range(N + 1):
if j == i:
continue
numerator = multiply_poly(numerator, xs[j])
# Compute inv_di
inv_di = pow(d[i], MOD - 2, MOD)
# Multiply numerator by inv_di and y_i
term = [ (coeff * inv_di % MOD) * ys[i] % MOD for coeff in numerator ]
# Add to a
for k in range(len(term)):
a[k] = (a[k] + term[k]) % MOD
for coeff in a:
print(coeff)
if __name__ == '__main__':
main()
qwewe