結果
| 問題 |
No.655 E869120 and Good Triangles
|
| コンテスト | |
| ユーザー |
qwewe
|
| 提出日時 | 2025-04-24 12:31:26 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 3,362 bytes |
| コンパイル時間 | 202 ms |
| コンパイル使用メモリ | 82,484 KB |
| 実行使用メモリ | 611,064 KB |
| 最終ジャッジ日時 | 2025-04-24 12:32:53 |
| 合計ジャッジ時間 | 4,833 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 3 |
| other | AC * 10 MLE * 1 -- * 19 |
ソースコード
import sys
from collections import deque
def main():
N, K, P = map(int, sys.stdin.readline().split())
blacks = [tuple(map(int, sys.stdin.readline().split())) for _ in range(K)]
# Initialize distance matrix with infinity
INF = float('inf')
a = [[INF] * (N + 2) for _ in range(N + 2)] # 1-based indexing
# Multi-source BFS setup
q = deque()
for x, y in blacks:
a[x][y] = 0
q.append((x, y))
# Directions: six possible moves (dx, dy)
directions = [(-1, -1), (-1, 0), (0, -1), (0, 1), (1, 0), (1, 1)]
# Perform BFS to compute shortest distances
while q:
x, y = q.popleft()
current_dist = a[x][y]
for dx, dy in directions:
nx = x + dx
ny = y + dy
if 1 <= nx <= N and 1 <= ny <= nx: # Check if within valid grid
if a[nx][ny] > current_dist + 1:
a[nx][ny] = current_dist + 1
q.append((nx, ny))
# Precompute prefix_row[i][j] = sum of a[i][1..j]
prefix_row = [[0] * (N + 2) for _ in range(N + 2)]
for i in range(1, N + 1):
for j in range(1, i + 1):
prefix_row[i][j] = prefix_row[i][j - 1] + a[i][j]
# Precompute diagonal_prefix_sum[i][j] for diagonal (i-j)
diagonal_prefix_sum = [[0] * (N + 2) for _ in range(N + 2)]
for i in range(1, N + 1):
for j in range(1, i + 1):
if i - 1 >= j - 1 and j - 1 >= 1:
diagonal_prefix_sum[i][j] = diagonal_prefix_sum[i - 1][j - 1] + prefix_row[i][j]
else:
diagonal_prefix_sum[i][j] = prefix_row[i][j]
# Precompute column_prefix_sum[m][i] for column m up to row i
column_prefix_sum = [[0] * (N + 2) for _ in range(N + 2)]
for m in range(1, N + 1):
for i in range(1, N + 1):
if m > i:
column_prefix_sum[m][i] = column_prefix_sum[m][i - 1]
else:
column_prefix_sum[m][i] = column_prefix_sum[m][i - 1] + prefix_row[i][m]
answer = 0
# Iterate over all possible starting points (i, j)
for i in range(1, N + 1):
for j in range(1, i + 1):
max_s = N - i + 1
if max_s < 1:
continue
low = 1
high = max_s
ans = max_s + 1 # Initialize to invalid value
while low <= high:
mid = (low + high) // 2
s = mid
end_i = i + s - 1
end_j = j + s - 1
# Calculate sum1: sum of diagonal prefix sums
if j - 1 >= 1 and i - 1 >= j - 1:
sum1 = diagonal_prefix_sum[end_i][end_j] - diagonal_prefix_sum[i - 1][j - 1]
else:
sum1 = diagonal_prefix_sum[end_i][end_j]
# Calculate sum2: sum of column prefix sums
m = j - 1
if m == 0:
sum2 = 0
else:
sum2 = column_prefix_sum[m][end_i] - column_prefix_sum[m][i - 1]
total = sum1 - sum2
if total >= P:
ans = mid
high = mid - 1
else:
low = mid + 1
if ans <= max_s:
answer += max_s - ans + 1
print(answer)
if __name__ == "__main__":
main()
qwewe