結果
問題 | No.3127 Multiple of Twin Prime |
ユーザー |
![]() |
提出日時 | 2025-04-25 21:30:56 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 811 ms / 2,500 ms |
コード長 | 3,462 bytes |
コンパイル時間 | 164 ms |
コンパイル使用メモリ | 82,124 KB |
実行使用メモリ | 200,672 KB |
最終ジャッジ日時 | 2025-04-25 21:31:32 |
合計ジャッジ時間 | 10,645 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 12 |
ソースコード
import math class Prime: def __init__(self, N: int = 1): self.N = N self.lpf, self.prime = self.makeLpf(N) def getPrimeList(self): """素数リスト(Nまで)""" return self.prime def isPrime(self, x : int): """素数判定""" if x > self.N: return self.isPrimeBig(x) return self.lpf[x] == x def primeFactorization(self, x: int): """素因数分解""" if x > self.N: return self.primeFactrizationBig(x) else: return self.primeFactrizationSmall(x) def makeLpf(self, N: int): """前計算O(N)""" lpf = [0] * (N + 1) prime = [] for i in range(2, N + 1): if lpf[i] == 0: lpf[i] = i prime.append(i) for p in prime: if p > lpf[i]: break j = i * p if j > N: break lpf[j] = p return lpf, prime def isPrimeBig(self, x): """素数判定""" if x <= 1: return False if x == 2: return True if x % 2 == 0: return False if x < 4759123141: return self.millerRabin(x, [2, 7, 61]) return self.millerRabin(x, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]) def millerRabin(self, n, L): """ミラーラビン法""" s = 0 d = n - 1 while d % 2 == 0: s += 1 d >>= 1 for a in L: if n <= a: return True x = pow(a, d, n) if x != 1: for t in range(s): if x == n - 1: break x = x * x % n else: return False return True def primeFactrizationSmall(self, x): """前計算O(N), クエリO(素因数の数)で素因数分解""" p = {} while x != 1: n = self.lpf[x] if n in p: p[n] += 1 else: p[n] = 1 x = x // n return p def primeFactrizationBig(self, x): """O(√x)で素因数分解""" p = {} last = math.floor(x ** 0.5) if x % 2 == 0: p[2] = 1 x //= 2 while x & 1 == 0: x //= 2 p[2] += 1 for i in range(3, last + 1, 2): if x % i == 0: x //= i p[i] = 1 while x % i == 0: x //= i p[i] += 1 if x != 1: p[x] = 1 return p P = Prime(10 ** 7 + 1) PL = P.getPrimeList() L = [] for i in range(1, len(PL)): a = PL[i - 1] b = PL[i] if a + 2 == b: L.append(a * b) class nibutan: @staticmethod def nibutan(ok, ng, op): while abs(ok - ng) > 1: mid = (ok + ng) >> 1 if op(mid): ok = mid else: ng = mid return ok @staticmethod def lt(L, n): """Lのうちn未満の最大の要素""" if L[0] >= n: return -1 def op(mid): return L[mid] < n ok = 0 ng = len(L) return nibutan.nibutan(ok, ng, op) @staticmethod def le(L, n): """Lのうちn以下の最大の要素""" if L[0] > n: return -1 def op(mid): return L[mid] <= n ok = 0 ng = len(L) return nibutan.nibutan(ok, ng, op) @staticmethod def gt(L, n): """Lのうちn超過の最小の要素""" if L[-1] <= n: return len(L) def op(mid): return L[mid] > n ok = len(L) - 1 ng = -1 return nibutan.nibutan(ok, ng, op) @staticmethod def ge(L, n): """Lのうちn以上の最小の要素""" if L[-1] < n: return len(L) def op(mid): return L[mid] >= n ok = len(L) - 1 ng = -1 return nibutan.nibutan(ok, ng, op) T = int(input()) for _ in range(T): N = int(input()) a = nibutan.le(L, N) if a == -1: print(a) else: print(L[a])