結果

問題 No.3127 Multiple of Twin Prime
ユーザー dadas
提出日時 2025-04-25 21:37:27
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 259 ms / 2,500 ms
コード長 3,160 bytes
コンパイル時間 2,404 ms
コンパイル使用メモリ 203,524 KB
実行使用メモリ 82,508 KB
最終ジャッジ日時 2025-04-25 21:37:47
合計ジャッジ時間 6,907 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 12
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//	mt19937 engine((unsigned ll)time(NULL));
//	uniform_int_distribution<ll> distribution(0, (ll)1e18);
//	auto generator = bind(distribution, engine);
//	ll x = generator();
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
// using namespace __gnu_pbds;
// #define ordered_set tree<int, null_type, less<int>, rb_tree_tag,tree_order_statistics_node_update>
// #define ordered_multiset tree<int, null_type, less_equal<int>, rb_tree_tag,tree_order_statistics_node_update>
using namespace std;
void _main();
int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	_main();
	return 0;
}
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using vi = std::vector<int>;
using vvi = std::vector<vi>;
using vl = std::vector<ll>;
using vii = std::vector<pair<int, int> >;
using vvl = std::vector<vl>;
using vll = std::vector<pair<ll , ll> >;
using vd = std::vector<double>;
using vvd = std::vector<vd>;
using vs = std::vector<std::string>;
using vvs = std::vector<vs>;
using vb = std::vector<bool>;
using vvb = std::vector<vb>;
using vc = std::vector<char>;
using vvc = std::vector<vc>;
using pii = std::pair<int, int>;
using pll = std::pair<ll, ll>;
using piil = std::pair<pair<int, int>, ll>;
using mii = std::map<int, int>;
using mll = std::map<ll, ll>;
using pql = std::priority_queue<ll>;
using pqi = std::priority_queue<int>;
using pqiil = std::priority_queue<pair<pair<int, int>, ll> >;
using pqii = std::priority_queue<pair<int, int> >;

#define pb push_back
#define ps push
#define eb emplace_back
#define is insert
#define er erase
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define sf(i) sizeof(i)
#define endl "\n"
#define all(v) (v).begin(), (v).end()
#define rep(i, L, R) for(ll i = L;i<=R;i++)
#define pcis precision
#define sz(a) ((ll) a.size())

template<typename T>
struct infinity {
	static constexpr T max=std::numeric_limits<T>::max();
	static constexpr T min=std::numeric_limits<T>::min();
	static constexpr T value=std::numeric_limits<T>::max()/2;
	static constexpr T mvalue=std::numeric_limits<T>::min()/2;
};
template<typename T>constexpr T INF=infinity<T>::value;
constexpr ll lINF=INF<ll>;
constexpr int iINF = INF<int>;
constexpr ld PI = 3.1415926535897932384626;

vector<ll> linear_sieve(ll n) {
	vector<bool> sieve(n+1);
	vector<ll> primes(n+1);
	ll primecount = 0;

	for (ll i = 2; i <= n; i++) {
		if (!sieve[i]) primes[primecount++] = i;

		for (ll a = 0; a < primecount; a++) {
			ll p = primes[a];
			if (i*p >= n+1) break;

			sieve[i*p] = true;
			if (i % p == 0) break;
		}
	}
	primes.resize(primecount);
	return primes;
}

void _main() {
	vl RES;
	vl lst = linear_sieve(1e7);
	ll K = lst.size();
	for (ll i = 0; i<K-1; i++) {
		if (lst[i+1] == lst[i]+2) {
			RES.pb(lst[i]*lst[i+1]);
		}
	}
	RES.pb(lINF);
	ll T;
	cin >> T;
	while (T--) {
		ll N;
		cin >> N;
		if (N < RES[0])  {
			cout << -1 << endl;
			continue;
		} else {
			ll at = ub(all(RES), N) - RES.begin();
			at--;
			cout << RES[at] << endl;
		}
	}
}
0