結果
| 問題 |
No.3127 Multiple of Twin Prime
|
| コンテスト | |
| ユーザー |
apricity
|
| 提出日時 | 2025-04-25 21:47:17 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 875 ms / 2,500 ms |
| コード長 | 11,973 bytes |
| コンパイル時間 | 2,512 ms |
| コンパイル使用メモリ | 213,216 KB |
| 実行使用メモリ | 160,732 KB |
| 最終ジャッジ日時 | 2025-04-25 21:47:39 |
| 合計ジャッジ時間 | 15,593 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 12 |
ソースコード
#ifdef LOCAL
#include "template.hpp"
#else
#include<iostream>
#include<string>
#include<vector>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<utility>
#include<tuple>
#include<array>
#include<cstdint>
#include<cstdio>
#include<iomanip>
#include<map>
#include<set>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<stack>
#include<deque>
#include<bitset>
#include<cctype>
#include<chrono>
#include<random>
#include<cassert>
#include<cstddef>
#include<iterator>
#include<string_view>
#include<type_traits>
#include<functional>
using namespace std;
namespace io {
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
template <typename T, size_t N = 0>
istream &operator>>(istream &is, array<T, N> &v) {
for (auto &x : v) is >> x;
return is;
}
template <size_t N = 0, typename T>
istream& cin_tuple_impl(istream &is, T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
is >> x;
cin_tuple_impl<N + 1>(is, t);
}
return is;
}
template <class... T>
istream &operator>>(istream &is, tuple<T...> &t) {
return cin_tuple_impl(is, t);
}
template<typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template<typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template<typename T, size_t N>
ostream &operator<<(ostream &os, const array<T, N> &v) {
size_t n = v.size();
for (size_t i = 0; i < n; i++) {
if (i) os << " ";
os << v[i];
}
return os;
}
template <size_t N = 0, typename T>
ostream& cout_tuple_impl(ostream &os, const T &t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) os << " ";
const auto &x = std::get<N>(t);
os << x;
cout_tuple_impl<N + 1>(os, t);
}
return os;
}
template <class... T>
ostream &operator<<(ostream &os, const tuple<T...> &t) {
return cout_tuple_impl(os, t);
}
void in() {}
template<typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template<typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
void outr() {}
template<typename T, class... U, char sep = ' '>
void outr(const T &t, const U &...u) {
cout << t;
outr(u...);
}
void __attribute__((constructor)) _c() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(15);
}
} // namespace io
using io::in;
using io::out;
using io::outr;
#define SHOW(x) static_cast<void>(0)
using ll = long long;
using D = double;
using LD = long double;
using P = pair<ll, ll>;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using vi = vector<ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using vvvvvc = vector<vvvvc<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using PQ = priority_queue<T,vector<T>>;
template<typename T> using minPQ = priority_queue<T, vector<T>, greater<T>>;
#define rep1(a) for(ll i = 0; i < a; i++)
#define rep2(i, a) for(ll i = 0; i < a; i++)
#define rep3(i, a, b) for(ll i = a; i < b; i++)
#define rep4(i, a, b, c) for(ll i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2, rep1)(__VA_ARGS__)
#define rrep1(a) for(ll i = (a)-1; i >= 0; i--)
#define rrep2(i, a) for(ll i = (a)-1; i >= 0; i--)
#define rrep3(i, a, b) for(ll i = (b)-1; i >= a; i--)
#define rrep4(i, a, b, c) for(ll i = (b)-1; i >= a; i -= c)
#define rrep(...) overload4(__VA_ARGS__, rrep4, rrep3, rrep2, rrep1)(__VA_ARGS__)
#define for_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() )
#define SZ(v) ll(v.size())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(c, x) distance((c).begin(), lower_bound(ALL(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(ALL(c), (x)))
template <typename T, typename U>
T SUM(const vector<U> &v) {
T res = 0;
for(auto &&a : v) res += a;
return res;
}
template <typename T>
vector<pair<T,int>> RLE(const vector<T> &v) {
if (v.empty()) return {};
T cur = v.front();
int cnt = 1;
vector<pair<T,int>> res;
for (int i = 1; i < (int)v.size(); i++) {
if (cur == v[i]) cnt++;
else {
res.emplace_back(cur, cnt);
cnt = 1; cur = v[i];
}
}
res.emplace_back(cur, cnt);
return res;
}
template<class T, class S>
inline bool chmax(T &a, const S &b) { return (a < b ? a = b, true : false); }
template<class T, class S>
inline bool chmin(T &a, const S &b) { return (a > b ? a = b, true : false); }
void YESNO(bool flag) { out(flag ? "YES" : "NO"); }
void yesno(bool flag) { out(flag ? "Yes" : "No"); }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityl(x) & 1 ? -1 : 1); }
int highbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int highbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int highbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T get_bit(T x, int k) { return x >> k & 1; }
template <typename T>
T set_bit(T x, int k) { return x | T(1) << k; }
template <typename T>
T reset_bit(T x, int k) { return x & ~(T(1) << k); }
template <typename T>
T flip_bit(T x, int k) { return x ^ T(1) << k; }
template <typename T>
T popf(deque<T> &que) { T a = que.front(); que.pop_front(); return a; }
template <typename T>
T popb(deque<T> &que) { T a = que.back(); que.pop_back(); return a; }
template <typename T>
T pop(queue<T> &que) { T a = que.front(); que.pop(); return a; }
template <typename T>
T pop(stack<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(PQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename T>
T pop(minPQ<T> &que) { T a = que.top(); que.pop(); return a; }
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
ll mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 60) {
for (int _ = 0; _ < iter; _++) {
double mid = (ok + ng) / 2;
(check(mid) ? ok : ng) = mid;
}
return (ok + ng) / 2;
}
// max x s.t. b*x <= a
ll div_floor(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b < 0);
}
// max x s.t. b*x < a
ll div_under(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b - (a % b <= 0);
}
// min x s.t. b*x >= a
ll div_ceil(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b > 0);
}
// min x s.t. b*x > a
ll div_over(ll a, ll b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a / b + (a % b >= 0);
}
// x = a mod b (b > 0), 0 <= x < b
ll modulo(ll a, ll b) {
assert(b > 0);
ll c = a % b;
return c < 0 ? c + b : c;
}
// (q,r) s.t. a = b*q + r, 0 <= r < b (b > 0)
// div_floor(a,b), modulo(a,b)
pair<ll,ll> divmod(ll a, ll b) {
ll q = div_floor(a,b);
return {q, a - b*q};
}
#endif
struct Sieve{
vector<bool> isprime;
vector<int> minfactor;
vector<int> mobius;
Sieve(int n) : isprime(n+1,true), minfactor(n+1, -1), mobius(n+1,1){
isprime[1] = false;
minfactor[1] = 1;
for(int i = 2; i <= n; i++){
if(!isprime[i]) continue;
minfactor[i] = i;
mobius[i] = -1;
for(int j = i+i; j <= n; j += i){
isprime[j] = false;
if(minfactor[j] == -1) minfactor[j] = i;
if((j/i)%i == 0) mobius[j] = 0;
else mobius[j] *= -1;
}
}
}
vector<pair<int, int>> factorize(int n){
vector<pair<int, int>> res;
while(n > 1){
int p = minfactor[n];
int e = 0;
while(minfactor[n] == p){
n /= p;
e++;
}
res.push_back({p,e});
}
return res;
}
vector<int> divisor(int n){
vector<int> res;
res.push_back(1);
auto v = factorize(n);
for(auto x : v){
int s = res.size();
for(int i = 0; i < s; i++){
int m = 1;
for(int _ = 0; _ < x.second; _++){
m *= x.first;
res.push_back(res[i]*m);
}
}
}
return res;
}
template<class T> void fzt(vector<T> &f){
int n = f.size();
for(int p = 2; p < n; p++){
if(!isprime[p]) continue;
for(int q = (n-1)/p; q > 0; q--){
f[q] += f[p*q];
}
}
}
template<class T> void fmt(vector<T> &f){
int n = f.size();
for(int p = 2; p < n; p++){
if(!isprime[p]) continue;
for(int q = 1; q*p < n; q++){
f[q] -= f[p*q];
}
}
// for(int p = 2; p < n; p++){
// if(!isprime[p]) continue;
// for(int q = (n-1)/p; q > 0; q--){
// f[p*q] -= f[q];
// }
// }
}
template<class T> vector<T> conv(const vector<T> &f, const vector<T> &g){
int n = max(f.size(), g.size());
vector<T> nf(n), ng(n), h(n);
for(int i = 0; i < (int)f.size(); i++) nf[i] = f[i];
for(int i = 0; i < (int)g.size(); i++) ng[i] = g[i];
fzt(nf); fzt(ng);
for(int i = 0; i < n; i++) h[i] = nf[i]*ng[i];
fmt(h);
return h;
}
};
ll pp[10000002];
int main() {
int tc; in(tc);
Sieve si(10000005);
rep(i,1,10000002) pp[i] = (si.isprime[i] and si.isprime[i+2] ? i : pp[i-1]);
while(tc--){
ll n; in(n);
ll r = binary_search([&](ll mid){return mid*(mid+2) <= n;}, 0, 10000000, false);
if(pp[r] == 0) out("-1");
else out(pp[r]*(pp[r]+2));
}
}
apricity